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Geophysical Fluid Dynamics Program

Summer of 1992

Preface

The topic this summer was "The Dynamics of the Outer Planets." Andrew Ingersoll
gave an excellent review of the current understanding of the structure of the atmospheres
of Jupiter, Neptune, Saturn, and Uranus. He presented the flow structures inferred from
the information gathered by the Voyager probes and other observations. The models of the
circulations of the interior and of the weather layer - the jets and vortices that we see in
the images - were discussed. Jun-Ichi Yano gave further discussions on vortex dynamics
in the lab, analytical, and numerical models as applied to the outer planets. Finally, Andy
returned with a discussion of thin atmospheres (some so thin that they disappear at night)
and new approaches to the dynamics of the interiors. These lectures provided a thorough
background in both the data and the theory.

As usual, we had talks (or what are sometimes called interactive seminars!) from
many visitors during the summer, some directly related to the main topic and others
covering other new research in geophysical fluid dynamics. From these, the fellows and
staff found new areas for collaborative research and new ideas which they may explore
after the summer.

Finally, the summer was completed with talks from the fellows on their individual
research during the summer. These reports reflect the thought and energy that went
into learning new topics and formulating new problems. We look forward to seeing fuller
versions of these in journal articles.

We gratefully acknowledge the support of the National Science Foundation and the
Office of Naval Research. The assistance of Jake Peirson and Barbara Ewing-DeRemer,
made the summer, once again, pleasant and easy for all.
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Lecture I - An Overview of the Outer Planets

Andrew Ingersoll

Introduction

The data obtained froia the Voyager spacecraft exploration program has revolutionized
the study of the atmospheres of the giant planets. The two probes were launched in 1977,
and remain operational to this day. Voyager I successfully completed encounters with
Jupiter and Saturn, including a ckle flypast of Saturn's largest moon, Triton (Stone and
Miner, 1981). Voyager 11 also collected information from Jupiter and Saturn, and, with
careful reprogramming to account for slower data retrieval rates and lower light levels,
continued on to successful encounters with Uranus and Neptune (Stone and Miner, 1991).

Voyager data has allowed detailed study of atmospheric fimtures over a wide range of
time scales. Rapid changes in features may be observed in real time. In addition, -movies"
of each planet have been constructed by connecting frames from different times during each
encounter with the same view of the surface. Theme allow the study of the variation of
long lived features, such as Jupiter's famous Great Red Spot, over time scales of a rotation
period or greater.

rhe Voyager spacecraft also obtained data on other aspects of the asture o the outer
planets of importance an the study of the atmosphere. We shall consider this first, so as
to provide a suitable framework for our nqumirs.

The Physics and Chemistry of the Outer Phaet

Density and compoitiom

Table I lists some bulk properties of the outer planets which are relevant to consider-
ation of their atmospheric dynamics.

Parameter Jupiter Saturn Uranus Neptune
Mass (Earth masses) 318 95 145 17
Radius (103 km) 71.5 80.3 25.6 24.8
Density (Mg m-3) 1.33 0.69 1..29 1.64
Emitted/absorbed power (f.) 1.7 1.8 1-0 2.7

Table 1: Physical properties of the outer planets

The mass (and also higher gravitational moments) can be determined from careful
study of the motions of natural satellites and spacecraft close to the planets. This enables
calculation of the mean density, which provides a significant constraint on internal compo-
sition. In particular, the low overall density of Jupiter and Saturn requires that they are
made almost entirely of hydrogen and helium. While Uranus and Neptune are of similar
density, they are much less massive, and so have a much lower central pressure. Thus their
principal constituents by mass must be more dense, and, based on cosmic abundances, are
thought to be methane (CH 4 ), ammonia (NH 3 ), and water vapor (H 2 0). All four planets
are truly fluid (with the exception of possible small rocky cores of order 10 earth masses,
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0.1 planetary radii in diameter). Thus any surface "topography" must arise entirely from
long lived stresie- generated by the internal fluid flow.

At the high pressures characteristic of the interiors of Jupiter and Saturn, hydrogtnii
will exist in other phases than the simple molecular form H2 , with significanlt chaniges
in physical properties. It is thought that there is no gas-liquid phase change, as the
transition occurs at temperatures and pressures much greater than those of the critical
point. However, theory predicts a phase change to a metallic structure at about 3 Mbar
for the temperature* characteristic of the deep interiors of Jupiter and Saturn. This occurs
at a depth of greater than 0.7R, in Jupiter, and 0.5Rs in Saturn. The interiors of Uranus
and Neptune do not reach sufficiently high pressures for this to occur-

Magnetic fields

Each of the outer planets has an intrinsic magnetic field of some strength. Jupiter
has a dipole tilt cery snmlar to that of the Earth (around 10 degrees), but the field of
Saturn is entirel, asymmetric to within the precision of the measurements. Uranus and
Neptune have highly inchned dipole fields, with evidence of cotmiderable complexity at
higher haruwucn. The interactwo of charged partieles with the~e magnetic fields prtoduces
p-rmodic radio eaun• s.i from the planets, which are used to determine the rotation period
of te mnagnetic field. Thhi s 0ierred to be the period of bulk internal rotation, with
which atmnoophenc uotuos may be compared Surprisingly. this procedure is po"ible to
high prc-•,wion even in the case of Saturn, demontrating that its magnetic field camnot be
enttirely axiyttMut inc

Eaergy balance

Th-re ax get~m stxalantsi in "ilk thernial structure of the gant plau.ts Total heat
bridget can be drtfinr4 in trruis o( the ratio of enmittedt to abiloebed pwerr.

*bscbrd power

Valuv,. fGr rach of the planet. are vvme in Tabk. 1 The rzrixc of rriitted to ah•sorwod

mwm- t,, pcrvid^d by internal he"t %mtr., a cobnavmtv-m a( tb' rrmane-t primordial beat
44 fort1IV4)it, and rue-rty of gravtatimoal unroimning. in particular the fallout of helium
'ra~ndropxM (rtin a prrdotminantly hydtrogen aatmcuvpher W'.ihthe r rtcption of Cranui•i.
the (,1ter planet., have significant itermal beat t-Ourer

Enerwy balAncr an a futirtct-i rA latitute it gstivwi in Figure'I Jupiter anid Saturn have
a mlasurrd trmperatwre differrrncr betwet reuatot and pole 4 lesm than 4'%. drspltt an
aborbewd opectrum ha n i.star o vuitirmn with latitutd Two p,•ihble e-xplanatti' I
for thins •re ither that the atmxospherir cirrultmon s w) efficewnt as to r-dmjribute al the
rnrriry in the wrathrr layr. ocr that tbr derp irritlatirm w such as to ptrefrerntially dni-e

heat toward., the po"
The rotation %xv, of t'ranwqu,, hithly inclined to the ecliptic. at 9S_ drevv' Currently

the planwt h^s one pole directed towwtdi. the sun, and in fi-t when xVW-erV-d over a fill
orbital period, more rnceKy vt Incident aI the po, than at the equator. exactly OppOItt-

to MIl the other planets

i



Atmospheric Chemistry

Bulk planetary chemistry can only be determined by inference from mass and observed
cosmic abundances. However, the atmospheric composition has been determined more
accurately by spectroscopy. This is given in Table 2, with values for the sun also included
for comparison.

Sun Jupiter Saturn Uranus/Neptune
H2  85 90 97 83
He 15 10 3 15

H20 0.11 0.0001 - -

CH4  0.06 0.2 0.2 2
NH 3  0.016 0.03 0.03 -

HSS 0.003 - -

Table 2: Planetary composition (component % by number)

To summarize, hydrogen and helium are dominant, with the rest of the components
making up of order I part in 1000 by number (1% by mass). Less volatile substances such
as H2 S and HIO are frozen out at cloud level, forming (in general) white crystals. These
cannot be accurately detected using spectroscopy as they are no longer gases. Bright colors
such as the reddish color of Jupiter are due to disequilibrium species such as phosphorus
and sulfur compounds and hydrocarbons such as C2H11 and C 2H2 . Jupiter has a highly
reducing atmosphere, with plenty o( energy available to drive reactions from uv light and
observed lightning, forming additional, more exotic, compounds.

At amwphork Dynamics

Thermaj structure

The thermal structure of the planets has been measured down to the I bar level for
Jupiter and Saturn, and the 2 bar level for Uranus and Neptune. Below this level it is
assumed that the structure is of a moist adiabat to the base of water vapor clouds and a
dry adiabat below that. The inferred structure is sbown in Figure 2.

The ohwervable atmxopheric dynamics can be considered as confined to a weather
layer This is defined in terms af the Brunt-Vaisala frequency, which may be written

SdT 1.2)

Here 9 is ¢,acrlatwon due to Khavity and Cp is the specific heat at constant pressure. Of the
two terms in brackets, the first is due to the moist adiabat and the second due to the dry

ditabat. The weather lay 14% defined to end at a depth where N 2 = 0, at which the fluid
is neiutrally *tratified (the temperature prfe as adiabatic) and bulk convection can occur.
This to estimated to be the depth of the deepest cloud, about I00 km below the surface
for Jupiter. This should be cmpared with the equatorial rmdius of the planet, which is
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71400 km. Thus the weather layer makes up a very small fraction of the total planetary
volume. The Brunt-Vaisala frequency also defines the Rossby radius of deformation

NH
LD = NH, (1.3)

where f is the coriolis parameter, and H is a scale height.
As noted earlier, and shown in Figure 3, variations in the surface temperature of the

planets with latitude are small. This suggests that, to first order,

.0, 14)

where 0 is latitude, at depth within the planet. This would imply that the structure of
adiabat is the same at all latitudes.

Zonal winds

The dominant atmospheric structure on all four planets is a pattern of stroa, onal
winds, concentric on the rotation axis. The detailed velocity structures of the planets show
significantly varying rich structure, which for Jupiter and Saturn at least is constant over
decades. These patterns are shown in Figure 4. The equatorial jet is prograde on Jupiter
and Saturn, and retrograde on Uranus and Neptune. There is dearly no straightforward
connection between the radiated energy F = aT4 and the wind speed, as Saturn (500
ms- 1 ) and Neptune (400 ms 1 ) have the highest observed wind speeds, despite the fact
that FN "-, Fj - -1-FE. (Speeds are zonally averaged, and measured at cloud top level
(1 bar).) It should be remembered, however, that in the case of Saturn, there may be some
uncertainty in the bulk rotation period inferred, due to the axisymmetric magnetic field.
All four planets have measured zonal winds considerably stronger than those observed on
Earth, which are no faster than 50 ms- 1 . A possible explanation for this is that as the
energy sources (both external and internal) are reduced, so also is the dissipation in the
flow, leading more and more to inviscid behavior, of which steady zonal flow is an example.
Thus the atmospheres of the outer planets could be said to be coasting, without significant
dissipation. This is also suggested by the behavior of Neptune's vortices, and the fact that
Uranus shows the same zonal wind structure, despite the north pole being pointed directly
towards the sun at the time of the Voyager 2 encounter.

Particular features

Jupiter

Jupiter displays surface features varying in scale from the Great Red Spot, which has
a radius of 25,000 km and, being first observed by Robert Hooke in the 17th century, a
lifespan of at least 300 years, through 3 white ovals, with scale 5,000km which were formed
in 1938, down to small scale features with lifespan less than one Jovian day (10 hours)
and of the scale of the radius of deformation. 90% of the long-lived features observed are
anticyclonic. There are approximately 10 major longitudinal jets over the body of the
planet.
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Saturn

In comparison with Jupiter, Saturn is rather bland looking, but it does show some
small scale features. One unique such is a hexagonal vortex centered over the North
Pole. Also every 30 years, Saturn "burps": a large disturbance of white clouds is observed
centered between latitude 100 and 150 north. This was first seen in 1870 and most recently
by the Hubble Space telescope in 1990. The feature lasts for about 4 months.

Saturn's satellite, Titan, also has a significant atmosphere, measured by Voyager 1
using a radio occultation technique. It is inferred to have a surface pressure of about 1.1
Earth atmospheres.

Uranus

Uranus is colder on the end facing towards the sun than in regions shielded from
solar radiation. This could be due to seasonal heat storage or preferential convectional
overturning. It is even more featureless than Saturn.

Neptune

Neptune has a number of significant features. The largest is the Great Dark Spot
(GDS), located between 180 and 26' south latitude. This periodically changes size, first
by expunging a streamer, and then expanding back to its original dimensions. Despite
this streamer, it is remarkably well modeled by the the equations for an elliptical vortex
in shear, first given by Kida (1981). The vortex is barotropic, with an infinite deformation
radius. Depending on the vorticities of the ellipse and the background shear, and the initial
orientation and aspect ratio of the ellipse, it can be steady, rotating, oscillating, or it can
be sheared out. The equations governing its motion are

dA (1.5)
= -SAXsiU2W~; Li = f~k + -(I+ Acos2v),

where 1/A is the aspect ratio of the ellipse, W is its orientation, s is the background shear
vorticity, fik = qA/(1 + A2) is the angular velocity of the vortex in the absence of shear,
q. is the vorticity of the vortex, and A = (1 + A2)/(1 - A2 ).

One should note that simply choosing the ratio s/q, to make the evolution of the
vortex match the maximum and minimum aspect ratio of the GDS gives the amplitude
of the oscillation in orientation, and the complete evolution for A and W once an initial
orientation is set. Polvani et al. (1990) have shown that the predictions from even this
simple model are in very good agreement with observation of the GDS obtained from
Voyager, and one may infer from this that the deformation radius on Neptune is large,
consistent with it having a moist atmosphere.

There is a second large vortex in Neptune's atmosphere, a white oval located at 500
south, and another two spots traceable over a period of months. There are also some
latitudes in which features are observed to move at different speeds, which is interpreted
to be different layers of motion.
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Conclusion

In this introduction, we have described the principal source of our information on the
atmospheres of the outer planets, outlined in very general terms their overall physical and
chemical properties, and provided a rapid overview of some of the features observed. We
are now in a position to begin properly our investigation of the atmospheric dynamics of
the outer planets.
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Figure Captions

Fig. 1: A comparison of absorbed solar energy and emitted infrared radiation for
Jupiter, Saturn and Uranus, averaged with respect to longitude, season and time
of day. (From Ingersoll, 1990b).

Fig. 2: Pressure-temperature profiles for the upper atmospheres of Jupiter, Saturn
and Uranus. (From Ingersoll, 1990b).

Fig. 3: Emitted infrared flux and equivalent brightness temperatures verses latitude
for the four outer planets. (From Ingersoll, 1990a).

Fig. 4: Zonal wind velocity verses latitude for the four outer planets. (From Ingersoll,
1990a).

Notes compiled by Rupert Ford and Richard Holme
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Lecture 2 - The Depth and Decay of Zonal Jets on Jovian Planets

Observations of the cloud layers on the Jovian planets have revealed persistent zonal
wind profiles in the upper atmosphere. However, the depths to which these winds persist
cannot be determined by direct observation. An estimate of the thickness of the zonal
wind layer may be made using the thermal wind equation. The derivation of this equation
begins with the assumption of geostrophic flow:

4(2.1.1)

where
1 al (2.1.2)
p =

A derivative with respect to pressure and the assumption of hydrostatic equilibrium to
convert pressure to depth (z) yields the thermal wind equation:

au a
-- -ag(X )p (2.1.3)

where a, the thermal coefficient of expansion, is:

I p (2.1.4)

Since the variation of temperature with respect to latitude above the cloud tops is known
(figure 1), this equation can be used to calculate the approximate depth of the zero wind
velocity layer (where u = 0) with a reasonable assumption of the variation of temperature
with depth.

Global Estimates

On all four of the giant planets, the relative variation of temperature (AT/T = e)
between the equator and the poles is small (less than 10%). In conjuction with the thermal
wind equation, this implies that the depth of the zonal wind layer must be large in order
to reduce cloud top velocities of a few 100 m/s (up to 500 m/s on Saturn) to no motion.
In order to get a quantitative estimate, treat the atmosphere as an ideal gas (a = 11T)
and assume that the relative variation in temperature is constant with respect to depth.
(This second assumption should yield results on the low end of the potential depth scale,
because the temperature would be expected to become more homogeneous with increasing
depth.) Further, assume a polytropic relationship between temperature (T) and pressure
(p), where:

T cc p' (2.1.5)

By intergrating the thermal wind equation both in z and "y" (or rdo for a sphere), an
equation for the pressure of the zero motion level can be determined:

PoU -- ( furdco } (2.1.6)

PcIoud eRTII.Id
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where PU=o alcd Pcdowd are the pressures at the zero motion level and the cloud tops respec-
tively, Tc1o.d is similarly the temperature at the cloud tops, and e is the relative variation
of temperature with respect to latitude.

Using data for Saturn (figure 1,2), with e = 0.04 and x - 1/3.5, yields a p.=o of
about 10,000 bars. This result is sensitive to the least certain quantity, e, so p.=o could
reasonably be on the order of 1,000 bars, but in either case the zonal wind layer consists
of a large amount of mass that is unaffected by sunlight (which only penetrates down to
pressures of a few bars). However, while this is a sizeable layer, it is still a small fraction
of the overall mass of Saturn.

In this calculation u decreases with increasing depth because the equator is warmer
than the poles; if this were inverted, then the velocity would increase with depth. The
Rossby number for these flows, using the length scale of a jet "wavelength" or width, are
0.1 to 0.5, so the geostrophic approximation is reasonable. It is also reasonable for the
cyclostrophic effects to be ignored in this calculation, since that term is dependent on the
planetary radius and fRlan.t/u >> 1 for the gas giants.

The Decay of Jets with Height (in the Upper Troposphere)

While the global scale calculation indicates that the variation of zonal wind velocity
(u) with increasing depth is slow (since the variation of temperature with latitude is small),
there are also local variations in temperature, leading to variations in the gradient of u
with respect to altitude (figure 3,4). These variations are correlated with changes in the
mean flow at the cloud tops (beneath where the atmospheric temperatures are measured)
such that au/az cc -u above the cloud layer. Applying the thermal wind equation to
these local variations yields:

U Z
where the scale height H is defined by RT/mg, which is approximately 20 km for Jupiter.
Therefore, the zonal velocities decay far more rapidly upward than downward, as the local
temperature variations are expected to become more uniform with increasing depth.

Interaction of the eddies with the mean zonal flow on Jupiter

Consider the zonal momentum equation in a rotating Boussinesq fluid:

S+ U. O f, (2.2.1)

Taking the zonal average of the zonal momentum equation we obtain:

at aij az - (2.2.2)

where the bar denotes a zonally averaged function and u' = u - U, etc.. The terms
on the r.h.s. of (2.2.2) are called Reynolds stresses and represent momentum exhange
between the zonal mean flow and the eddies. For example, the Reynolds st'ess pu'v is
the eddy northward transport of eastward momentum. Let us first study the effect of the
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Reynolds stress u- on the energetics of the zonal mean flow. Multiplying (2.2.2) by U
and integrating over the fluid volume we obtain an equation for the total kinetic energy
density of the mean flow. After an integration by parts we obtain:

" ý' + ý;FV7'y-i) +(2.2.3)

where () denotes integration over the fluid volume. When v-- d. > 0 the eddies tend to
reinforce the mean flow.

Analysis of the Voyager I and II data for Jupiter provide information on the eddy-
mean flow exchange of (2.2.3). Observations of the zonal wind on Jupiter at cloud level
(- 0.5bar) have been already discussed. It was possible from the same data-set to infer
the tendency of the Reynolds stress forcing in (2.2.3). Towards this purpose the wind
observations were separated in latitudinal bins 1P wide. There were about 100 observations
available per latitudinal bin. For each latitude the mean zonal velocity, U, and meridional
velocity, U was calculated. From the mean zonal velocity the latitudinal shear, -U, was
also calculated. Departures from the zonal mean gave, at each latitudinal bin, t~e eddy
zonal velocity u' and eddy meridional velocity W'. The estimated Reynolds stress uv was
subsequently normalized by the variance of the eddy field:

,(u,v) = ( () • (2.2.4)

The results of such analysis of the Voyager I and Voyager II data are presented in Fig.
2.2.1. Note that at most latitudes the Reynolds stress is of the same sign as the meridional
shear of the zonal wind, indicating forcing of the mean zonal flow by the eddies. Such an
eddy transport although characteristic of many geophysical systems, i.e. the Earth's jet
stream, runs against our intuition gained from the commonly observed transport processes.
According to kinetic theory departures from the mean tend to be homogenized leading to
fluxes that are down the mean gradient. For example in thermal convection, the heat flow

T I ,= with k > 0. The Reynolds stress can be similarly related to Tfii through
an equivalent eddy viscosity coefficient of exchange v.e:

- -V= - .V" T • (2.2.5)

If the process of momentum exchange was diffusive it would associate an eddy viscosity
v'e > 0. Analysis of the data presented in Fig. 2.2.1 shows that for Jupiter ve < 0.

Although our knowledge of the energetics of the Jovian atmosphere are partial we will
attempt to compare them to the energetics of the terrestrial atmosphere. The exchange
between the eddies and the mean are profitably described in terms of the Lorenz energy
cycle which is shown for the Earth in Fig. 2.2.2. The equation for the zonal mean kinetic
energy and the eddy kinetic energy are concisely written as:

=i {(2.2.6)
d

d K' = {P'K'} + {KK'} -W,
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where

P- (2.2.7a)

K#= 2 (2.2.7b)

(Pjj W_(2.2. 7c)

K (2.2.7d)

{P'K'} oc (2.2.7e)

and e is the kinetic energy dissipation.
For the Earth {KK'} = -0.3Wm 2 . The estimates of the Reynolds stress, u" ,

from the Voyager data indicate an energy transfer from the eddies to zonal velocity field
which, if left unimpeded, could double the zonal kinetic energy in 75 days. If such a
transfer of energy were to take place in a layer of 2.5 bars the transfer rate would lead
to {KK'} - -2Wmn-2. This estimate is, remarkably, 15% of the total thermal power
emitted from the planet (14Wm- 2 ), implying a very high efficiency (for the Earth the
corresponding eddy transfer is just 0.1% of the 240Wm- 2 emitted by the planet). Such
efficient eddy interactions suggest that the zonal jets are formed by the eddies which are
in turn fuelled by the convective heat flux.

Theoretically our understanding of the processes responsible for the formation of the
multiple jets of Jupiter is still at an early stage. However, it is worth noting an idealized
model of the Jovian atmospheric circulation that produces jets maintained by upgradient
Reynolds stress. Gareth Williams (1979) randomly forced a barotropic thin spherical
shell, which upon becoming turbulent, produced a multiple jet structure. The situation is
presented in Fig. 2.2.3.

Stability of the zonal winds of Jupiter

We assume that large scale motions on the atmospheric envelope of Jupiter are quasi-
geostrophic. In log-pressure coordinates the conserved potential vorticity, q, takes the
form:

P=2& !~p ) (2.3.1)

where z =- -HIn (L, p. is a standard reference pressure, H =- is the standard
Ps 9

scaleheight corresponding to a global average temperature T., and N 2 = k- ( T + T

is the Brunt-Viisilf frequency. The streamfiuction 'k is related to the zonal and meridional
velocity by: u = -p1 , v = b. The density is given by: p = psexp (--) where P. is the
density at z = 0 (Holton, 1992, p.2 5 4 ). We can neglect the vertical contribution to the
potential vorticity as long as the radius of deformation which is given by LD =
is larger than the characteristic scale of variation in the meridional and zonal direction,
L. For Jupiter taking the characteristic values N - 10-2s-1, 10 22 x 10-4s-1, and
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H., 20km we obtain LD $ 1000km, the same value as the Earth. The conservation of
potential vorticity reduces to the barotropic vorticity equation:

d
w-(( + f)= 0, (2.3.2)

where C = V 2 b, and f = f. + fly.
To determine the stability of a mean zonal flow U, it is customary to impose a wavelike

disturbance b'eik(z-ct) and determine the dispersion relation c(k) from the linearized form
of the field equations. If for certain zonal wavenumber, k, Im(c) > 0 then the flow is
liable to be disrupted by exponential normal modes and is characterized as unstable. The
linearized form of (2.3.2), after substituting a wavelike perturbation, is:

[k + (1 -iiiftk' = , (2.3.3a)

with the boundary conditions

0 = 0 y = ±pY± o • (2.3.3b)

Note that #_- d' - d. Suppose that the mean flow U is unstable, so that ci = Im(c)
is nonzero (it is not necessary to require ci > 0 because if c is an eigenvalue of (2.3.3a)
so is its conjugate c*).

A necessary condition for instability can be derived by multiplying (2.3.3a) by the
complex conjugate of 0', integrating by parts, using the boundary condition (2.3.3b). The
imaginary part of the equation that results is:

k, IV _12 , (2.3.4)

--1.

which consequently requires that if there exists an unstable mode with ci > 0 then by
necessity d must change sign to satisfy integral constraint (2.3.4). For jets of the form:

Vi c Cost• with L << Y. , it has been shown that change of sign of d does indeed imply
instability.

The variation of d2 for Jupiter's mean winds is shown in Fig. 2.3.1 (Ingersoll et al.,

1981; Limaye, 1986). The variation of Tiu is bounded by ±213. The necessary condition
for instability is satisfied. The mean observed zonal wind are to a fair degree sinusoidal
and consequently the flow must be unstable. Note that inclusion of the baroclinic term
can not stabilize the flow. The gradient of the mean potential vorticity

dq y 2i 18 U) z,\ 6~ L - (2.3.5)

For a sinusoidal mean wind field 1_ oc -U and consequently (2.3.5) implies that inclusion
of the baroclinic terms reinforce the violation of the necessary condition for instability.
Note the 1 changes sign in regions with westward zonal flow.
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P-&Comparison of the zonal velocity gradient duI/dy (left) with the eddy
correlation coefficient r(u',v'). The center and right curves are from Voyager
I and Voyager 2, respectively (7). At most latitudes r(u',v') and d~u/dy have
the same sign, indicating that kinetic energy is being tnsferred fr6m'i "
eddies to the zonal flow through the Reynolds stress term. [eprinted from
(7) with permission from the American Geophysical Union].
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FIG. 4. Curvature or second derivative of Jupiter's
zonal velocity profile for the solid curves of Fig. 3.
Voyager I is on the left and Voyager 2 is on the right.

The smooth curve on the right of each profile is 0, the
planetary vorticity gradient for thin spherical shells.

The smooth curve to the left of each profile is B sin2X,
derived in the text for deep fluid spheres. The B sin 2X

curve is relevant up to a latitude of about 40 to 450,
where effects of the metallic core become important.

The limiting curve (not shown) for deep flow at higher
latitudes is infinite at the critical latitude and lies to
the right of each profile. Notice that the observed pro-
files rarely cross the left curve, but often cross the
right curve, suggesting that a deep interior flow with

the observed curvature might be marginally stable.
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Lecture 3 - Interior Circulations of the Giant Planets

The Voyager spacecraft missions have provided detailed observations and measure-
ments of Jupiter, Saturn, Uranus and Neptune. Unfortunately, however, observations
have been limited to the outer or weather layer and consequently relatively little is known
about the interior of these planets. The planetary interiors are important because they de-
termine such "bulk" properties as the magnetic field and may couple with the weather layer
thus affecting the observed behaviour. In this lecture the interior dynamics of Jupiter are
discussed, and it is shown that weather layer observations may be used to infer information
about the interior.

Explaining Jupiter's heat flux measurements

In lecture 1 it was shown that despite strong latitudinal variation in solar radiation the
surface temperature on Jupiter was essentially uniform. Two extreme views of the Jupiter
circulation may be used to explain this result. The first states that interior dynamics
profoundly effect the behaviour of the weather layer while the second assumes that the
weather layer alone dominates the latitudinal transport of heat.

The assumption of strong interior circulation may be modelled by taking an adiabatic
(barotropic), inviscid, steady interior for the planet so that

-- 0(3.1)

where z is the axial coordinate and u a zonal velocity. This system may be used to explain
the ring-like structure of the observed velocity (Figure 1), recalling that from lecture 2 the
weather layer winds appear to increase with depth via the thermal wind relation. Small
departures of the system from adiabaticity (e.g. surface radiation and interior heating)
may result in columnar convection, axial convection cells, if rotation effects are important.
The interaction of the columnar convection cells and the cylindrical zonal flows has been
investigated by Busse (1976) and the convection motion shown to produce Reynolds stresses
which maintain the strength of 8u/&r and consequently the zonal flows. The interior flow
must transport heat poleward in response to the great net radiative cooling discussed above.
The simplicity of this model may be interrupted if large departures from the barotropic
state (such as hydromagnetic effects or interaction with the solid planetary core) disrupt
the convection columns.

The second model suggests, by analogy with the Earth's circulation, that internal
heating is distributed evenly and the bulk of latitudinal heat flux occurs within the weather
layer via baroclinic instability. The instabilities again induce Reynolds stresses which may
maintain the zonal jets in the weather layer. The stable stratification of the weather
layer decouples it from the deep interior. A criticism of this second argument is that the
baroclinic instability requires a significant poleward temperature gradient, which is not
present globally on Jupiter. This model will not be pursued here.
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Interior Thermal Balance

To provide a conceptual model of how the radiation budget may be balanced by
interior diffusive processes it is useful to evaluate the radiative and conductive timescales
for a body.

Consider a highly conducting sphere in space. The equations governing its tempera-
ture are

PC--a = kV 2T (3.2a)

-k - = o'T 4 _ -- cos# (3.2b)

where 40 is the latitude. If we estimate
8 1 V 1

S;2- and T'-T 0  
(3.3)

then the conduction and radiation time scales are
2

Tcr and r pcriTo (3.4)t~k 0
Assuming that the conduction is much more rapid than radiation (Tr << rr) the sphere
adjusts to the internal heat distribution quickly compared to the external cooling time.
Consequently the sphere is almost isothermal (inside to outside and equator to pole) when
the conduction constant k is large. This situation is a model of the giant planets when the
convective eddy diffusivity of heat is large.

A Cautionary Tale

The model of Busse (1976), combining inviscid, adiabatic, interior zonal flows with ax-
ial convection columns to describe Jupiter's heat transport must be treated with caution,
as the following example illustrates. The sun's outer mantle layer appears from obser-
vations to be near adiabatic. Consequently, steady zonal flows may be modelled by the
inviscid equations,

2• Av= - Vp- V , (3.5)p

where t = 4N - 4fl2 r2 , 4 N is a Newtonian geopotential, r is the cylindrical coordinate
and z is the axial coordinate. In this system,

&t 1 8 p 8P 8p8OP
2fl a = 1 (L p lo -- ) (3.6)

Tz a z az ar
yielding,

4-9 = 0 (3.7)

as before, if p = p(P), that is, the layer is barotropic, which includes the case of p =
p(P, S) with constant S, just as has been postulated for the Jupiter interior. However,
helioseismological measurements imply that 8u/Oz 6 0 (Figure 2), from which it must be
deduced that one or more of the assumptions must be violated. This suggests that small
deviations from the adiabatic state may have significant effects on the flow field. Thus the
assumption of adiabaticity must be applied with caution.
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A Mixing Theory

In order to quantify the dynamics of the mixing within giant planets, the mixing
length theory of turbulent convection may be invoked. Several assumptions are made, the
limiting one being that of no rotation. In addition it is assumed,

1. parcels rise one scale height, H- -RT = ,9

2. rising parcels have a typical temperature excess bT,
3. kinetic energy approximately balances work done by buoyancy for a parcel,

v2,ý g-, gTb, (3.8)

4. heat flux, F - pcv6T,
5. the temperature gradient gives ST , 1, where 0 is the potential temperature.

These yield, V x 11 (3.9)

which is a measure of typical turbulent velocities at the top of the mixed layer. Here
Pc = A. Combining these assumptions, the departure of the overall temperature gradient

C,

from the adiabatic is found by,

Ar 1 dO v2  (3.10)

For Jupiter and Saturn,
Ar--- 10-51 (3.11)

which suggests that the interiors are very close to adiabatic. Of course rotation is not
likely to be insignificant and should be accomodated in these calculations. The Rossby
number of this convection will be,

VRo = i-,, 0.2 (3.12)

The effects of rotation will increase with depth.
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Stability of Interior Zonal Flows

Having illustrated that the interior, near adiabatic zonal flows may be essential to
the understanding of the dynamics of the giant planets, it is necessary to consider the
stability of these flows. This field is largely unexplored except in simplest terms. Writing
the momentum equations,

S-6S*- -- (13a)-2• - r

0= - -- 6S4 (13b)
O z az

in cylindrical polar coordinates, they combine to give

2l au as0- T 63r ar 8(3.14)
az O z Orý -- j -57z,

for the zonal flow.
A first step is to scale for quasi-cylindrical, quasi-geostrophic flow (Ingersoll and Pol-

lard, 1982): let the coordinate length scales behave as,

LZ r,Le - r,L, << r, (3.15)

with Lr = L << r ande= c -L << 1. Now consider a barotropic basic state U(r)
with X = 0. Here it is possible to obtain an analogue of the barotropic vorticity equation:

8(Z

-C) d2-p +-(B - d 2U A =-0, (3.17)

where B = 20dM and M f pdz, inegrating axially through the planet from surface to
surface. B sin2 0 plays the same role as P but is numerically around three times larger for
Jupiter. This could provide an explanation for the observation that the maxima of u., for
Jupiter are approximately equal to 3/#.
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Lecture 4 - Jovian Vortices

Some of the large scale characteristics of the Jovian atmospheres have been well known
for years, observed easily from Earth telescopes. Jupiter is nearby and has a strong visual
contrast related somehow to its atmospheric composition, so observers have been familiar
with its latitudinal bands and its single large anti-cyclonic vortex at 10'S latitude (The
Great Red Spot) for over 300 years. It was the arrival of the Voyager spacecrafts that
connected the banded structure with the alternating zonal jets that characterize the global
circulation of Jupiter's atmosphere. These close up observations also revealed a plethora
of vortices on all scales on all of the Jovian planets; it seems that despite the differences
in Solar driving, all the giant planets have similar circulations and vortical phenomena.
Through the camera eyes of Voyager, we have been able to observe and try to sort out the
behavior of vortices in a geophysical environment.

The analysis of Voyager's data is far from complete, but there are characteristics that
we notice immediately: there is a lot of activity occuring on the smallest scales of motion,
and this activity evolves very quickly. Vortices on this scale have short lifetimes. There
is also a lot of uncertainty about the physical processes that may be taking place at these
scales (i.e. convection, precipitation, etc). Still, we can form some "rules of thumb" about
the dynamics of vortices. The smallest vortices are nearly circular in shape. Most of the
vortices (90 percent) have a circulational sense opposite to that of the planetary rotation
(they are anti-cyclonic). Although the sense of rotation is difficult to observe directly
for the smaller vortices, we may assume that they have the same sign of vorticity as the
shear zone in which they reside. Vortices interact with other vortices: two vortices can
form an orbiting pair, and they are also seen to merge, forming a larger (stronger) vortex,
and we may safely assume that mergers happen between vortices of the same rotational
sense. Mergers like this may be the fundamental process responsible for the formation of
the larger vortices, even the "great vortices." Often in the merger process, and also from
single vortices, a long filament will be shed, presumably a tendril of vorticity that is either
ejected or extracted for some reason. Vortices are also observed to split, becomming two
or more smaller vortices. Vortices also move: we can see some drifting, some oscillating
in their positions or drift velocities; presumably they are interacting with the background
flow in which they sit. Larger vortices seem to be more stable, but even they will oscillate
in size and position and (if the vortex is oval-shaped) in their orientation and shape.

In the vicinity of the GRS, we see that the small spots that live to the east are
advected by the mean flow toward the spot and merge with it. It is difficult to determine
the sense of rotation of the smallest vortices, but again we assume that, since they merge,
they are anti-cyclonic. Just west of the large ovals (including the GRS) there is a cyclonic
chaotic wake, sligh'tly equatorward of the central latitude of the spot. Vortices appear
spontaneously inside these wakes, which are reminiscent of the appearance of convective
turbulence.

Despite the chaotic behavior and rapid evolution of the small scale structures in the
vicinity of the GRS, the spot itself has persisted since it was first observed 300 years ago,
and it may be an unknown number of orders of magnitude older than that. Such staying
power is even more surprising in light of the small fluid circulation timescales on Jupiter,

the GRS itself has a circulational frequency on the order of a day. Jupiter's three large
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white ovals have also persisted since they formed in 1938 out of the segmentation of a
white band at that latitude. The white ovals are 2-3 times smaller than the GRS, but the
strongest of the ovals has nearly the same mean vorticity as the GRS. The comparison
is made in figure 1, where observed tangential velocities (vt) are plotted versus distance
along the vortex semi-major axis (a) for the white oval BC on the left and for the GRS
on the right. We see that the Red Spot has smaller mean vorticity despite its larger size
as a consequence of its relatively quiet interior. The GRS is more like a ring of vorticity
circulating around a static core as shown in figure 2. The GRS remains fixed in latitude,
orientation and size, but is observed to oscillate in longitude (with respect to its inean
westward drift) with a period of about 90 days.

Neptune's Great Dark Spot is the same size relative to Neptune that the GRS is
relative to Jupiter. The GDS, however, is observed to oscillate in shape and orientation.
Figure 3 shows the time evolution of the aspect ratio A and the ellipse orientation 0. Notice
that 0(t) leads A(t) by 900 of phase.

The behavior that we observe through these cloud top motions of the Jovian planets
is familiar from laboratory and numerical experiments on two-dimensional and nearly two-
dimensional geostrophic flows, and from the limited conclusions that can be drawn from
geostrophic and quasi-geostrophic theory. But there is no getting around the fundamental
uncertainties related to the inability to observe the Jovian fluid motions at all depths below
the cloud tops. We know very little about the vertical structure of the Jovian planets, so
there is no way to know to what extent three-dimensional processes are part of or are
responsible for producing what we see at the planets' surfaces.

Modelling the Vortices: Vertical Structure

Despite the wealth of cloud-top observations, there is very little data about the vertical
structure of the Jovian atmospheres. Ideally, we could consider the vertical structure as an
unknown, exploring the possibilities with a full spectrum of models. We would hope that
the most realistic model would produce the results that most resemble what is observed.

Normal Mode Decomposition

Since rotational effects are important, we may consider beginning with the geostrophic
or quasi-geostrophic equations of motion on a #-plane:

dq 0
dt

where the total time derivative is

d 0 O aT a
dt at ax ay ax

and
q = V2%P + f + 1 (P f2 0•pz P• O

is the quasi-geostrophic potential vorticity, p is the density, T is the streamfunction, f is
the Coriolis parameter, and N is the Brunt-Vaisala frequency.
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We can separate the solutions into the product of a horizontal streamfunction and a
vertical structure function:

A(

n=

from which we see that 4I. is the solution to the eigenvalue relation:

PF + = 0.

and the horizontal structure is now described by a set of coupled equations for the %,P.
In this way, the complete vertical structure of motions is resolved as a superposition

of normal modes. This has several advantages over layer models. First, the derivation of
the normal mode equations shows the straightforward connection between vertical struc-
ture (contained in the vertical variation of N) and the model parameters; and second, it
more accurately models the nonlinear interactions among baroclinic modes. The model
is founded on the ,oistruction of a complete vertical profile of the static stability from
Voyager data (which reaches to a depth of about 5 bars) and the assumption of a deep
adiabat at great depth ILe Voyager temperature profiles that are used to compute N 2

are shown in figure 4. Below Unis level we assume that the lapse rates, and therfore N-2
mnay be greatly affected by the pesnce of condensibles. The true N 2 will depend on the
difference between the wet and dry lapse rates, so below the Voyager data, we assume the
presence of an ammonia cloud overlying a water cloud in which:

N2 = (+ >

and that N 2 = 0 below the water cloud (in the interior), yielding the model static stability
profile shown in figure 5.

We look for resonant modes now by applying a radiative boundary condition and
evaluating a (non-physical) response function for all values of A. Because of the radiation
condition, the modes are near-resonant approximate eigenfunctions; for more details refer
to Achterberg and Ingersoll 1989 (JAS, 46, 2448-2462). The peaks in this response function
and the associated eigenvalues are shown in figure 6. We note that the zeroth mode 4o0,
with A0 = 0 is hieght independent; it can therefore be identified with the barotropic mode.
It includes motion in the interior, which is unaffected by the other modes, but which has a
strong influence on all of them. The 4). with n > 0 have no amplitude in the interior; these
are therefore the weather layer modes. Indeed, we see that when only one mode beyond
the barotropic mode is retained in the model, the standard 11 layer model equations of
quasi-geostrophy are recovered, where:

A1 = 1 = (radius of deformation)- 1 '

LD -735km

and to' plays the role of bottom topography (as we shall see) for the weather layer. For
the Jovian models, we can use %II0 to account for the zonal flow (U) I the interior using:

AO -=- "

Ia
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Single-Layer Quasi-Geostrophic Models with Topography

The two-mode single-layer equations can be written:

dt

where q = V2* +,Oy - A2(* - *e).

We can see that the barotropic mode (t,) can be thought o f the topography upon

deriving potential vorticty consrvatio directly from the shallow water equations:

dv
.+ fk x v=-gVh.

and sad da•+hV~v=O

where h := h, - h, is the layer thidmess, h. is the five suruswe height, and hb is the

topographic height, as shown in figure 7. It is straightforward to show then:

where C is the vorticity and:

C + f V2* + fo +fly
h ho + 6hA + 6hb

is the potential vorticity; so

g6h. so = gh,

Ts=fo A 1'

therefore associating the barotropic mode with the topographic height.
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Single-Layer Models With No Topography

The simplest models do allow some exact solutions of vortex problems. The Kida
vortex is an excellent example, and was employed by Polvani et al (1990 Science, 249) to
interpret the motion of Neptune's Great Dark Spot (GDS). In two dimensions, we have:

•-- =0 q=V 2 •I
di

and look at the solution of a uniform vorticity (P is therefore zero) regions demarcated
by simple geometric boundaries: in this case an ellipse of constant (potential) vorticity q,
surrounded by a region of constant potential) vorticity q2 (see figure 8). The aspect ratio
A and inclination angle 0 of the elliptical boundary can then be shown to oscillate as:

dA"ji =-s.\ sin 20b

+ 2 [-1 + A cos 201

where A 1 +A 2

0:=-q,(+) , :=q2 v A:=I----.
(1 + A)2 '1 -A 2

If the three parameters (ql, q2, A(t = 0)) are matched to the data representing the
aspect-ratio and inclination oscillations of Neptune's GDS, we find that the period, mean,
and amplitude of A(t) and 0(t) can be simultaneously fit. Polvani et al have also shown
that this model gives rise to a zone just outside the GDS where particle trajectories are
chaotic (figure 9).

Unfortunately, no knowledge about the vertical structure is gained from a two di-
mensional study. Polvani et al have also developed a Kida-like model from the single
layer equations (with 6 and LD). Contour dynamics is used to follow the evolution of
the elliptical boundary that best fits the GDS data. The best fit in this case indicates an
unexpectedly large deformation scale: LD > 7000km.

There are some problems with this ellipse-fitting technique. Among them is the fact
the the area of the GDS varies. The variations seem to be correlated with the ejection of
"streamers" of vorticity filaments, a phenomenon of viscosity, that cannot be accounted
for in these inviscid treatments. There is some confidence to be gained by noting that the
lost area is always regained, but we cannot take this too far since it is not known what
is responsible for the recovery: my guess is that the streamers are somehow eventually
recovered.

Notes compiled by Louis Tao and Phil Yecko
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Lecture 5 - Determining the Deep Flow

In the last lecture, we argued that one may consider the deep zonal flow below the
weather layer to be represented by an effective bottom topography in a one layer shallow
water system. We performed a vertical mode decomposition, in which only the barotropic
mode, with streamfunction ko, has non-zero amplitude in the interior of the planet. For
the next mode (n = 1), Ob0 appears as an effective topographic forcing term.

Various authors have adopted stratgies of differing complexity and rationality in se-
lecting an effective deep zonal flow uo = -dio/dy for Jovian numerics.

Ingersoll & Cuong (1981) (hereinafter IC81) took the zonal flow measured in the
weather layer as an estimate for u0 , so the weather layer is assumed to have the same
basic zonal flow as the deep interior. Taking another view, Williams & Yamagata (1984)
(hereinafter WY84) and Williams & Wilson (1988) took uO = 0 for their simulations. The
coherence of the Great Red Spot (GRS) suggested to Marcus (1988) (hereinafter M88)
that Rossby wave radiation should be weak in the latitude band of the GRS, so he took
q = constant fo simulations.

Subsequently, Dowling & Ingersoll (1988) devised a method of inferring the deep zonal
flow from the Voyager data in latitude bands where coherent vortices are present, and used
their inferred bottom topography for shallow water simulations of the GRS (Dowling &
Ingersoll, 1989 - hereinafter D189).

We shall now outline the procedure for inferring Oo, and discuss the results of the
simulations.

Inferring the Deep Zonal Flow

Let us consider the closed streamlines a-d in the GRS (fig.1). We recall that 0 is
constant on streamlines, and that, since q is advected with particles, it must also be
constant on closed streamlines.

To fix ideas, we consider a quasigeostrophic model, where

q =f +(_ -A 2(0_0 0b)

where ik is the streanfunction in the weather layer, C E V2 Ob is the relative vorticity, f is
the planetary vorticity, and A is the inverse deformation radius.

Rearranging for Oo, we have

_0 = + A -2 (_q + C+ f) =_ A, + B(C + f)

where now the Ai depend on the contour, since each contour may have a different potential
vorticity, and B is determined by the deformation radius chosen.

Now, C is obtained from the wind speeds in the data, and f is known, so we can now
proceed to fit this to the data. To do this, we assume io(y) of the form t0o(y) = Dy + Ey 2,
and fit

Ai + B(C + ff) + Dy + Ey 2 = 0

to the data using a least squares method. The generalization of this method to the shallow
water system is presented in Dowling & Ingersoll (1989).
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Figure 2 shows the variation with latitude of the absolute vorticity C + f round each of
the curves a-h in fig. 1. The smooth lines represent the quadratic least squares fit obtained
by the above procedure. The dashed lines show f as a function of latitude. We can see
that the foregoing procedure has obtained good agreement with the data.

Figure 3 shows the equivalent bottom topography and deep zonal wind for the shallow
water analysis in D189. The dashed line in figure 3b shows the cloud top zonal wind profile.
Notice the significant difference between the cloud top and deep zonal winds at around
20 - 25' South.

Single layer simulations

We now consider the effect of different types of topography on the formation and
persistance of large coherent strucures such as the GRS in zonal flows realistic for GRS
latitudes. The simulations are performed for single layer shallow water equations with
periodic zonal boundary conditions and no normal flow boundary conditions at 50 S and
400S. For the topographies of DI89 and WY84 the mean zonal flow U1 in this latitude
band is barotropically unstable and Rayleigh relaxation with a time constant of 400 days
was used to maintain the mean state. The physical mechanism by which these apparently
unstable zonal jet flows are maintained in the Jovian atmosphere is not clear, but we should
bear in mind that the true system is not a shallow layer with a bottom topography, but
instead has a deep zonal flow which may have very different combined stability properties.

The results from single layer calculations are shown in figures 4-8. In all cases vortices
in shear are remarkably stable. If U, is unstable then instabilities develop and small
vortices form which merge in time to form one long-lived vortex. When U, is stable, an
initial vortex will last indefinitely. If the flows are perturbed randomly or if additional
small vortices are introduced into the flow, one finds that the large coherent structures
remain intact.

The lesson of single layer models is that vortices in shear are remarkably stable.
However, the fundamental limitation of single layer models is that they do not contain the
baroclinic instability mechanism. We shall see that a model with two baroclinic modes
admits vortices with a rich structure of instabilities, but that the stable barotropic vortices
are recovered in a certain limit, which is presumed relevant for the Jovian atmosphere.

Multi layer vortex models

From Achterberg & Ingersoll (1992), we consider a quasigeostrophic model in which
there are two baroclinic modes (01 and ik2 ), and a deep barotropic mode (0bo), giving rise
to baroclinic flow and possible baroclinic instability in the weather layer.

We shall consider cases where a baroclinic vortex is implanted into the weather layer
at time t = 0. We shall assume that initially both tPI and 02 have the same horizontal
structure.

We let L be a typical horizontal length scale of the vortex and define two parameters

2L2 12
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where L 1 and L2 are the first and second baroclinic deformation radii. For Jupiter, we
take LI = 735km, L2 = 155km.

We define a further parameter

02(= 0)0-- (t =0)

and note that if -0.2 < s < 1.8 then the vortex has the same sign of vorticity at all
latitudes.

In the absence of background shear, we find that large vortices, for which A2 >
0.15; \2 > 3.3, are stable in the regime -0.2 < s < 0.2, but otherwise they split hori-
zontally, leaving two smaller vortices.

For small vortices, with A2 < 0.15; A2 < 3.3, we find that when -0.2 < s < 1.8
"vertical splitting" occurs, in which the vortex splits up to form two vortices, each at a
different level. Otherwise, we have stability (figure 9).

With shear present, a large part of the stable regime for zero shear, corresponding
to small baroclinic vortices (A2 < 0.2 and s < 0) becomes unstable due to the shearing
out of vortices with vorticity of opposite sign from that of the background shear vorticity.
The remaining "stable" states (figure 10) are not steady, but correspond to oscillations
in aspect ratio and orientation, similar to the single layer Kida (1982) vortex in the case
s0.

The result of the instability of small vortices leads to vortices splitting into two - one
vortex at each level. The remaining fragments will orbit each other, and from above this
looks like an oscillation in latitude and longitude of a single vortex. This is believed to have
been observed on Neptune, and must be borne in mind when interpreting observational
data. In particular, the observed oscillations of Neptune's spot D2 (fig. 11) could quite
possibly be explained by a two-layer baroclinic strucure.

A GCM for the outer planets?

Having developed some intuition for the similarities and differences between barotropic
and baroclinic models by considering barotropic and two-mode baroclinic vortex structures
with and without shear, we might be tempted to try to develop a full scale GCM for the
outer planets, similar to those which have been developed for the terrestial atmosphere. A
partial list of things to study might be

(1) Relative importance of solar versus internal energy
(2) Maintainance of jets - widths and speeds
(3) Maintainance of vortices - cannibalism versus convection
(4) Decay of jets with height in the upper troposphere

(5) Nature of small scale (< 1000km) chaotic motions
(6) Flow beneath the weather layer (adiabatic interior)

Good models for studying diabatic processes use isentropic vertical coordinates (e.g.
Hsu & Arakawa). The advantages of isentropic coordinates are that
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(1) The vertical motion and the diabatic circulation are the same thing, since adiabatic
dynamics are confined to isentropic layers.

(2) Stacked shallow water code is used, with heating Q represented by a small transfer of
mass between layers proportional to Q.

(3) For giant planets, Q is small (the radiative time constant is long - 10 to 100 years).

(4) For giant planets, the bottom of the weather layer is an adiabat - a coordinate surface
in isentropic coordinates.

The strategy is then to model the dynamics of the stably stratified weather layer
(pressure < 5bars for Jupiter) with the GCM, and treat the interior flow with a bottom
boundary condition. However, this potential approach has yet to yield any substantial
results.

Mixing length theory of baroclinic eddies

One of the potentially important processes which the weather layer GCMs would
require very high resolution to resolve explicitly is the transport of heat by baroclinic
eddies in the weather layer of the planet.

Making some elementary assumptions about the vertical distribution of solar heating
in the deep interior of Uranus (see fig. 12), Friedson & Ingersoll (1987) used Stone's (1972)
mixing length theory of baroclinic eddies to model the the mean surface temperature as a
function of latitude.

To use Stone's parameterization, we must first choose a vertical scale height I.. As-
suming the distribution of potential temperature 0 to be given, this defines a radius of
deformation Ih by

We then take the departure of temperature 6T from the adiabatic equilibrium T to
be given by

6T~

and assume a horizontal heat flux Fh to be given by

F1, = pcpv6T.

Using the thermal wind relation for the horizontal velocity v gives

fv g gT
1, lh T

We then take the ratio of vertical heat flux F. to horizontal heat flux Fh to be given by

Fv w (OO/Oy)

Fh v (0/az)
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where w represents a typical vertical velocity. Assuming this parameterization the temper-
ature field can now be time stepped by setting its time derivative equal to the convergence
of the heat flux (Fh, F.). The new 0 field can then be derived by assuming some relation-
ship between 0 and T, such as a perfect gas law.

In addition to Stone's parameterization, one also requires knowledge of seasonal heat
storage and convective adjustment for the appropriate season. To understand the role of
convective adjustment, we fix our attention on the Northern Spring and Summer (figure
12).

At the start of the Northern Spring, the surface layer (at the top of figure 12a) is
assumed to have been radiating heat, and convection from the warm interior of the planet
penetrates to the surface at all latitudes north of the equator (fig. 12a). As the sun starts
to fall on the top layer, convection is no longer sustained and is turned off (fig. 12c). Note
the almost complete disappearance of thermal structure in Southern latitudes in figure
12d, as the surface layer cools in the southern winter and convection becomes active.

Incorporating both of these effects into a model for Uranus allows us to investigate the
relative importance of each one in determining the season and annual surface temperature
distribution.

The results of the model seem to agree well with observations of mean surface tem-
perature with latitude for Uranus (figure 13), but do not account for small-scale features,
which are presumed to be due to zonal jet decay.
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Figure Captions

Figure 1 Streamlines in the region of the Great Red Spot, obtained from Voyager
Data.

Figure 2 Plots of C + f along streamlines with latitude. The left panel is for streamline
segments West of 1090 longitude, the right panel for East of 109'. The heavy
dots are computed from the Voyager Data. The solid curves are a quadratic least
squares fit to the data. The dashed lines are f.

Figure 3 Bottom topography gh 2 and inferred deep layer velocity u2. (a) Solid curves
are inferred bottom topographies for different values of the free parameter A2 -

the deformation radius. The dashed line is the effective free surface height. (b)
Lower layer zonal wind velocities corresponding the bottom topographies given
by (a).

Figure 4 GRS simulation using bottom topography of DI89.
Figure 5 GRS simulation using bottom topography of IC81.
Figure 6 GRS simulation using bottom topography of WY84.
Figure 7 GRS simulation using bottom topography of M88.
Figure 8 Extended GRS simulation, showing merging of two large vortices in shear.
Figure 9 Regime diagram for baroclinic vortex stability computations. f-plane, with-

out shear.
Figure 10 Regime diagram for baroclinic vortex stability computations. f-plane. with

shear.
Figure 11 Observed oscillations in longitude and latitude of Neptune's Great Dark

Spot.
Figure 12 Contours of potential temperature over a 135 day period for the interior of

Uranus from the model with convetion parameterization.
Figure 13 Surface temperature predictions for Uranus using the Friedson & Ingersoll

(1987) model.

Notes compiled by Qingping Zou and Rupert Ford
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Lecture 6 -A Formalism for Investigating the Atmospheric Dynamics of Jupiter

J.1. Yano

Introduction

In order to study the dynamics of Jovian atmospheres, we must first develop suitable
and usable mathematical tools. We approach this by first examining physics that is relevant
to the problem. In particular, we justify consideration of an inviscid formulation (i. e. to
neglect the external forcings and the dissipations) as a sensible physical limit, and consider,
both qualitatively and with a normal mode analysis (i. e. to define the vertical structure
of eigenmodes with a given vertical thermodynamical structure), the possible influence
of deep motions upon the observed atmospheric layer. This will define the boundary
condition for a large number of quasigeostrophic and shallow water models. We derive a
shallow water formulation, and specialize to the quasigeostrophic limit. Finally we apply
the techniques of solitons and the KdV equation to the analysis of vortex dynamics.

Jovian free dynamics

Table 1 lists order of magnitude estimates of some relevant quantities to the energy
budget and atmospheric dynamics of Jupiter and Saturn, normalized to values for the
Earth.

Parameter Jupiter Saturn Earth
Distance to Sun (Rs) 5.2 9.5 1.0
Solar Energy Supply (FR - Rs 2 ) 1/25 1/100 1
Steady wind speeds (U/ms-1) 100 400 10
Kinematic Energy (EK _ U2 ) 102 103 1

Energy Dissipation time scale (rD ,• •) 2.5 x 105 1

This illustrates that characteristic speeds of planetary zonal winds increase with distance
from the sun, and thus with decreasing solar insolation. Internal heating is of the same
order of magnitude in each case as solar radiation. This is suggestive that dissipation of
energy in atmospheric flows is very low on Jupiter and Saturn, and so the dynamics can
reasonably be examined with an inviscid formulation and without external forcing.

Models of the Jovian atmosphere

Successively more elaborate models have been applied to understand the the atmo-
spheric dynamics of the giant planets. Williams (1978) used a one-layer barotropic model
originally due to Rhines(1975). Williams and Yamagata (1982) extended this to a reduced
barotropic model, with a solid bottom boundary and a free-surface upper boundary. This
we- refined by Ingersoll and Cuong (1981), and Dowling and Ingersoll (1989), to a 11
layer model, with the bottom boundary defined by a fixed deep flow. Yano and Flierl (in
prep.) introduced a true 2-layer model, with two layers of different density, and a free
upper boundary. This can be extended to a model with 3 or more layers, or inverted in
its density structure to allow for an unstably stratified configuration.
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Deep convection

Much of the behavior of the models described above is controlled by the applied
bottom boundary condition. This is defined by the connection of the dynamics of the
weather layer to the dynamics of the deep interior. There have been a number of differing
views taken of the nature of the internal circulation of the Giant Planets, of which we
briefly describe four. The simplest view of interior motion is one of isotropic small scale
motions as would be suggested by a mixing length convection theory. Conversely, Busse
(1976) suggested a structure in which rotation was an important element, leading to a
large number of Taylor columns, as shown in figure 1.1a. Other possible structures are
the formation of radial, sinking plumes at the base of the weather layer (figure 1.1b) (J.
Sommeria, personal communication), or that such plumes form and are then dominantly
influenced by rotation, generating "Taylor plumes" (figure 1.1c) (J. Marshall, personal
communication).

Vertical structure of normal modes

The influence of deep motions within the planets on the observable motions in the
weather layer may be inferred by a normal mode analysis. This has been done by Achter-
berg and Ingersoll (1988). We begin with the equation of conservation of potential vorticity,
and consider a separable solution of the form

O(x,Y1,z,t) = 0o(x,y,t) (z), (6.1.1)

where x and y axe the coordinates parallel to the surface of the planet, z is the vertical
coordinate and t is time. The vertical dependence may then be found by solving the
equation

1 1 a f2-p- + AnJ'in = 0, (6.1.2)

where An = 1/LD, and LD is the Rossby deformation radius for a particular order of
solution. Expanding the operator,

[- H(z) dz+ 2 ]n = 0, (6.1.3)

where H(z) is the local vertical scale, defined

1 _N 2  p
-(6.1.4)

H(z) pz N 2

We seek a local harmonic solution of the form exp(i f m(z)dz). If m(z) is a slowly varying
function such that its derivatives may be ignored to first order, then

2 im N2
m + H f 2 L2 = 0' (6.1.5)
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which has solutions
1 [ f 2 LD 2

M D + N2 (6.1.6)
2H ±TLD 4H2

Thus there is a change in behavior of any given mode at N - - N. Above this value,

the solution is wavey, while above it R(m) 0 0, giving exponential behavior in z. Figure
1.2 shows the structure of the two modes with the highest values of LD for Jupiter.

The two-layer shallow water approximation

Here we develop the equations for a two layer fluid system with rigid plane base using
the shallow water approximation. The full details of the relevant scaling relationships are
explored by Pedlosky (1987) §3.3. The two layers are denoted by subscripts j = 1,2,

and are of equilibrium height H,, uniform density pi. Small variations in the level of the
interfaces are described by %b, where the subscript relates to the layer below the interface.
Hence the fluid density is given by

P1 " Z > H 2 + 1 /2P= Ip2 : z < H2 +r1 2 . (6.2.1)

Using the beta-plane approximation, we consider a local coordinate system on the

surface of a sphere at a latitude 4). We define a longitudinal coordinate z, and a latitudinal
coordinate y, and expand the Coriolis parameter about a local "reference" value:

2M sin 4) ; fo + fly

2fI cos 4 Ats jo + 7y (6.2.2)

This formulation is applicable for small variations in latitude, 0 ,, 4o, or equivalently
y - 0. This gives rise to the following system of equations:

Dt _(f0 +fly)tv+}-(j0 +'yy•)wO --= 1
Dt - O+P~ o+-ywP 8z

D (u + = 1 a (6.2.3)
Dw _ (jo + _fy•)t= 1!2 •P
Dt - V

with the convective derivative given as usual by

D 0 (6.2.4)T-- = 5i + uTX + V5ý + wý;.(6..4

Assuming incompressible flow, continuity gives

T+5i + z =o . (6.2.5)
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We non-dimensionalize as follows

U*H a u a
UU, V= Uv, W* U=U w, I . -8tL~t'

8 18 8 18 8 18a- -1 a-a 
(6.2.6)52"- O= ' 1• 5 - W• Z ' 57; - Iz

Henceforth, starred variables are dimensional and unstarred non-dimensinal. H is a vertical
length scale, L is a horizontal length scale, and U is a horizonal velocity scale. Two
dimensionless numbers arise naturally from this system: the aspect ratio 6 = HIL and
the Rossby number i = U/foL. Working in the regime such that 6 C i, we may ignore
horizontal components of the Coriolis force, while the assumption that 6 < j2 gives as a
consistent balance that vertical pressure gradients are entirely hydrostatic, viz.

1--- + g = 0.

p 8z

Integrating this last condition gives

p; = pig(H1 + i - z* + H 2 )

P* = p1g(HI + v - q2) + p 2g(H 2 +172 - z),

which when differentiated horizontally yields

VHp; = p~gvr•VHP*I= P1VT1*(6.2.8)
VHp; = p1gVr* + (p2 - pl)gV.(62)

As the horizontal pressure gradients do not depend on z, from reexamining equations
(6.2.3), it is consistent to assume that the horizontal velocities u and v are also independent
of z. Thus

8 8
Tui = 0, TV 3 = 0. (6.2.9)

This gives for the first layer

D, 09
eb.D -(1+#1 V = F 7

- (6.2.10)

,t vi+ (1 + PY)uI = - 771,

and for the second layer

D2 - Y)V2 = (6.2.11)
~.D2  ( 3~u

Df + V2 + Y)+ 2 = - ,1B,
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where
D--'t +a Ua+ vi9 (6.2.12)

rib = q2 + '1h 11 = 71 - 172, 1 = PI/P2, (6.2.13)

and we define a non-dimensional beta parameter

S=_ L /fo. (6.2.14)

We integrate the continuity equation in the z-direction with boundary conditions

Wj=Djqj
Dt

at the top of the 3 th layer (simply the Lagrangian definition of velocity), and require no
normal velocity through the bottom boundary, so w = 0 at z = 0. Then, for the first layer,

i-F17- F, + n)(-T + -- )=0 (6.2.15)

and for the second layer

(•-• -F• + 6z)(7; + -) = 0 (6.2.16)

where the unnormalized Froude numbers, F,, are defined

-) = fL /gH,. (6.2.17)

Note also that
r= (1 - ir)r + 178. (6.2.18)

Note, the system of equations of the upper-layer derived here for a two layer system
is equivalent to that for a one layer model with bottom topography ira, upper surface
displacement r7 and gravity g' = (1 - -y)g.

It is possible to transform the governing equations (primitive equations) into dif-
ferent coordinate systems. Common examples are pressure coordinates (z, y, p), where
p = p(x,y,z,t), or 9 coordinates (z, y,0), where 9 = #(z, y,p,t) is potential temperature.
In the pressure coordinates, we define a Lagrangian pressure velocity

w = R - DNp pw. (6.2.19)
Dt Dt

using the equation of hydrostatic balance Applying simple rcaling arguments, it emerges
that the relative importance of the two terms is vastly different for the Earth and Jupiter.
On Earth,

,j -p g U (6,2.20)
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while on Jupiter

W ̂ - Di.p (6.2.21)Dt

Thus w has a different physical meaning when considered for the two atmospheres.
Note that the two layer shallow water system is formally applicable, even with P /P2 >

1, as long as 6 < i. Furthermore, we may even consider an unstably stratified two layer
system with free lower boundary but rigid upper boundary. While at first this may seem
to be unphysical, it may be a good model of the Jovian atmosphere, as the tropopause
may act as a rigid upper boundary for atmospheric motions. The governing equations are
the same as for the system developed here, with the exception that the layers are inverted
and the signs of the Froude numbers reversed.

Quasigeostrophic system

We assume a scaling for the shallow water equations

i -, < 1, F,~ -,, 1, (6.2.22)

with expansion of variables in small quantities

u) =u + iEt1 +... (6.2.23)

To 0(1), this gives

U, = -- ;' Vj = -s ' (6.2.24)

where V' = 171 and 0 2 = ia. To order i, the equations are

-)+ J(,,, QO) = 0 (6.2.25)

where
Q = 16201 + F2 (02 - 01) + O (6.2.26)Q2 = A202 + A(7101I - 02) + OV.

trhe horizontal Laplacian is defined

& =--, 
(6.2.27)

J is the Jacobian

= , a ON aQ (6.2.28)J( "'q= r ay ay &Z'

S= i4/, and -y = pI/P, as before. P = F,/(I - ) is a normalized Froude number, which
is implicitly approximately less than or equal to 1.



61

We note in passing that as Fi = foL 2/gHj, F - (L/LDj)2 , where

LD, = 1(1 - y)gHji/ fo (6.2.29)

is the Rossby deformation radius characteristic of layer j, and that

P2/,Pl = F21F1 = HIIH2. (6.2.30)

An energy conservation equation can be derived as follows:

a a a a a a
(5i + -ul +-Zvi) 7 Ki + (5 + -u2 + ZýV2 )(K 2 + P)=O, (6.2.31)

where weeK r(U + Vi) 
(6.2.32)2Fi2

is the kinetic energy of the fluid in layer j, and

p = -(1 - 02)2. (6.2.33)
2(1 -- f)

is the available potential energy. With unstable stratification, 7 > 1, and so the available
potential energy P is less than 0 (Yano, 1987a). This means that the differential heating
will decrease the available potential energy under unstable stratification. Note that there
is an extra positive 'available' potential energy due to this unstable stratification.

The quasi-geostrophic approximation can also be derived in terms of the pressure
coordinates described above. For the Earth, the thermodynamic equation reduces to

- -(6.2.34)

where Fp is the FPoude number in pressure coordinates. Given the preceeding scaling
analysis, whether this is an appropriate relation for Jovian (giant planet) atmospheres
must be called into question.
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QG linear dynamics

If we linearize the QG equations, we obtain

a(A 21PI + F1 (02 - )IP + o- =0
5i ax' (6.2.35)a[A202 + F2(01 -02)] + 4 2- 05i~ O

or, with an ansatz for the functional dependences of - exp[i(wt + kz + ly)],

w[-K 2 Oi + F1(0 2 - 01)] + k/? 1 = 0 (6.2.36)
w[-K 2' 2 + 12(7yb - 02)] + k02 = 0

where K 2 P k2 + 12. The determinant of the solvability condition of these relations leads
to the general dispersion relation for Rossby waves.

There are two instructive limiting cases. Firstly, in the limit y -- 1 we recover
conventional quasi-geostrophy. The two solutions are the barotropic mode

W = k3/K2 , 01 = 02, (6.2.37)

and the baroclinic mode

w = Ik/(K2 + A + F2), F1r 2 + F201 =0. (6.2.38)

The second useful limit is for a deep lower layer, when F2 -- 0. This gives

w = kfl/(K 2 + F1), 4'2 -_ 0, (6.2.39)

implying no flow in the lower layer. This is the reducee gravity limit.
Note that, with unstable stratification, because -y> 1, and FP = F1/(1 - -y), it follows

that F1 < 0. Thus the solution for w is discontinuous. This corresponds to a change in
the direction of propagation of Rossby waves.
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Solitary Wave Theory

We begin exploring models of the GRS from the soliton, because it is a most ex-
tensively studied permanent wave solution. Redekopp (1977) was the first to derive a
KdV equation from the quasi-geostrophic (QG) equation. For brevity, we consider the
equivalent barotropic QG system. The governing equation is given by

I + J(0, -)](V 2 - F)q + •7- = 0. (6.3.1)

Here, t is the displacement of the surface from a mean state. We divide the flow into the
mean zonal state

SfUdy (6.3.2a)

and eddy perturbations about this mean. The perturbations are expressed as an expansion
in a small parameter e (note: implicitly i < e < 1):

07 (1) + f2,7( 2 ) + o(O3 ). (6.3.2b)

By transforming the derivatives by

-x /(6.3.3a)

O e 1/20 (6.3.3b)

we obtain to leading order O(e1/2)

d• 2 Il + F'U - U"
[-y2 - F + U-c ] -O, (6.3.4a)

where the leading order eddy is assumed to be of the form:

17") = A(ý, r)O(y) (6.3.4b)

Note that (6.3.4a) with appropriate boundary conditions defines an eigenvalue problem for
the phase velocity c. The equation for the wave modulation A is given at O(e3/2) by

0(02 - P)17(1 ) + (U - , a3'

a'7() a a2 IU(I) a (a2
+O a(- a2 -- FP)10') 0- 0 -- F)i•<') (6.3.4c)

+ [(U - c)(-. - F) + (- + FU - U")],7(2 ) = 0.
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A solvability condition for q7(2) is obtained by multiplying (6.3.4c) with r(l)/(U - c), and
integrating in the y-direction. Finally, we obtain the KdV equation

A, + pAA4 + qA.ft = 0 (6.3.5)

for a nonlinear Rossby wave, where

a <Al8i+PU-U)>
< (U-c Z~8 U-c

q = AP/+PPU-U,,

< 0 - _2 _ >
(A~i+U U -¢>

and < > denotes integration in y-direction over the domain.
Examples of the solutions obtained are shown in Fig. 3.1. Here, the anticyclonic

zonal flow U = sn(y I m), defined in terms of the Jacobian elliptic function with m = 0.1,
is assumed. The solutions are classified into two types. The E-soliton: an anticyclonic
vortex-wave, containing closed elliptically shaped streamlines, which drifts relatively slowly
westward (-0.437 < c < 0); and the D-soliton: a depressive wave with reversed flow fore
and aft of the wave center. Fig. 3.1 (a) and (b) show the fastest-propagating •igenmodes
of (3.4a) with a different beta (f = 0.3 and 0.6, respectively). Each of them corresponds
to an E-soliton and a D-soliton. Fig. 3.1 (c) shows the second fastest-propagating mode
of (3.4): a modulated E-soliton.

Maxworthy and Redekopp (1976) were the first to seek a description of the GRS as
a Rossby wave soliton. The morphological similarity of the GRS to the E-soliton and of
the South Tropical Disturbance ( 1. Peek, 1958; Hirabayashi, 1981) to the D-soliton was
noted.

Redekopp and Weidman (1978) considered the interactions nf two Rossby solitons. In
place of the single vortex solution (6.3.4b), they postulated a two vortex solution

2

E= An(ztOn(Y)P,(Z). (6.3.6)
n=I

After similar manipulation as in Redekopp (1977), a pair of KdV equations'

AI,t + cIA1,, = e(2riA1AI,, + \lAIA 2,, + vlA 2 A,,, + sAI,,,,) (6.3.7a)

A2,t + c122,x = e(2r2 A2 A2,, + A2A2 A,,, + v2 AiA2 ,, + 82A2,,,,) (6.3.7b)

are obtained, where \i, v, (i = 1, 2) are the coefficients representing the magnitude of the
interactions. By expanding the amplitudes A, and A2 in terms of e, the interactions can
be described analytically in full. In particular, to leading order, a single soliton - 'ition is

1 Note that the phase velocities cl and c2 are different by factor of order u, while

(6.3.5) can just describe the solitons of the phase velocity c in leading order.
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recovered for both of the solutions Ai (i = 1, 2) propagating with phase velocities ci. The
process of the interactions is described as a higher order perturbation.

The examples of the interactions of the two E-solitons, calculated from (6.3.7a, b) by
a perturbation approach, are represented in Fig. 3.2. In Fig. 3.2(a) a very strong soliton
'meets' a weak soliton: at the colliding stage, the weak soliton is completely overwhelmed
by the stronger one. Fig. 3.2(b) is an intermediate case: a medium size soliton 'meets' a
large soliton. The medium soliton is absorbed by the larger one, as both of them approach,
but at the peak of the colliding stage (t = 0), the center of both of the solitons can be
distinguished. Fig. 3.2(c) is the case of two nearly equal solitons. At t = -60, the smaller
of the two 'stretches out an arm' to the larger. However, the arm is not persistent, it soon
disappears by t = -40. The collision is very weak (t = 0), and the former one exchanges
into the latter one without much overlapping during the collision. Note the evolution after
the collision is reproduced by just turning the figure up-side-down, and reversing the x-
direction. Features of the interactions of the Rossby solitons are qualitatively in agreement
with those of the usual KdV-solitons described by Eq. (3.5). The main difference is found
in the phase shifting: both Rossby solitons can be shifted in the same direction during the
interaction, as shown at the bottom of each figures.

Maxworthy et al. (1978) elaborate on their rationale to model the GRS as a Rossby
soliton. They speculate that a marginally unstable shear flow maintains the GRS-soliton
against its dissipation. They also supplement their arguments with observations of the
interaction of the South Tropical Disturbance and the GRS in terms of soliton theory.
They particularly remarked that both of them experience positive phase jumps after the
interaction.

Generality of KdV Dynamics

The derivation of the KdV equation by Redekopp (1977) was based on the skillful
scale transformation (3.3a, b). The physical basis of thi- .aling is not obvious. In this
section, we turn to the physics underlying the derivat Ad address the generality of
soliton dynamics in geophysical flows in this section.

The KdV equation describes the balance between nonlinearity of the form rpz and
dispersion of the form 17.,,. Dispersion of this type is allowed in large scale geophysical
flows by the dispersion relationship of the Rossby waves. This is obtained by linearizing
(3.1), and assuming a plane wave solution - exp[ikx + ily - iwt]

= k 2 +1 2 +F (6.3.9)

When the inequality
k2 < 12 +P (6.3.10a)

is satisfied, then the dispersion relation is approximated by

w - (1 ). (6.3.1Ob)
j 2 + 12 +F
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The second term is proportional to k3 and corresponds to the term rz in the KdV
equation.

Inequality (6.3.10a) implies that a weak dispersion is obtained by stretching the scale
of the r-coordinate compared to that of the y-coordinate by factor, say, r-' (> 1) i.e.

a 8--* ri-I k --+ rk.

Consequently, the magnitude of the weak dispersion is measured by

Ato 0,.0 ,- -r
(12 + F)2

by assuming (12 + F) 2 - S, where S = P- 1 .
On the other hand, the magnitude of the nonlinear advection term is measured by

(V V" ý V1 IO27 (6.3.11)

where e has been introduced in Eq. (6.3.2b). Consequently, the balance between the weak
dispersion and the nonlinear advection requires

r 7- re, or e-r -E .

In particular, for the QG regime with i < ' , 1, we obtain

2 1/2
e-r or r'-%1

recovering Redekopp's scaling (6.3.3b). For consistency the slow time scale is scaled by

r • 3 -e3/2

in accordance with (6.3.3a).
By performing this type of a general systematic scaling analysis, we can define the

domain of the validity of the soliton dynamics in the nondimensional parameter space
(i, /, S, r, e) characterizing the geophysical flows. Care should be taken in performing this
type of analysis. For example, in turns out that a naive scale estimate of the vorticity
advection given by (6.3.11) is not always true. Without the basic zonal flow U(y), this
type of nonlinearity identically vanishes in leading order. The point is easily confirmed by
setting U - 0 in (6.3.4a). In this case, the leading order linear eigenvalue problem (6.3.4a)
reduces to a Helmholtz equation for the y-dependence, which allows the replacement of
V 2 by a constant in the nonlinear advection term. The nonlinear advection term may be
recovered by taking into account the (#-effect in the expression of the vorticity, namely

C=V.( V7

1 + t31.
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This correction leads to a nonvanishing vorticity advection term even within a weak basic
zonal flow.

The parameter ranges of this general analysis is represented in Fig. 3.3, where the
classifications of the KdV-Rossby solitons are made in the (i, 9)-plane. The nonlinearities
responsible for a KdV-type balance in each domain are depicted along with an appropriate
name for the domain. The particular scaling adopted in previous studies is represented by
small closed circles with the name of the authors. The three typical dynamical regimes
(QG, IG, PG) defined for geophysical flows are indicated by open circles. It is seen that
the vorticity advection term is responsible for the primary nonlinearity in the regimes of

> /. However, it is due to the existence of the basic zonal flow only in i > 2, while
the existence of / is imperative in i < /32. On the other hand, with a weaker stratification
(i.e. S < 1), another nonlinearity, the wave steepening term, denoted by /vri in Fig. 3.3,
becomes a dominant term. The source of this nonlinearity, absent in QG dynamics, can
be traced by approximating the potential vorticity:

Q = ( +fly- 1I- + )( - - O7)+0(()

+ fly + iC-.0- -- uq + 0(-.)
.5 8 S

The first four terms correspond to the QG potential vorticity, while the advection of the
fifth term leads to the wave-steepening term of the form Pv?7.

The main point of Fig. 3.3 is that KdV-type solitons are possible for every basic
state U(y) according to shallow water theory, with their amplitude restricted by higher
nonlinearities, as shown in Fig. 3.4 for the case of i = 0 (without basic zonal flow). Fig. 3.4
suggests the existence of a unique dynamical regime with an isotropic scaling (r = 1)
characterized by KdV-dynamics. The primary nonlinearity is the wave steepening effect
/3qv. The balance of the nonlinearity with the dispersion term yields

or e, _2 with an isotropic scaling. This curve is represented by a thick line in Fig. 3.4.
It is seen that we obtain KdV-dynamics in the range e _ g2 < ý2 with isotropic scaling.
Within this range we can identify a dynamical regime characterized by the balance of the
meridional twisting term /hi,= of the /0-advection2 to the dynamics. This condition is

2 The meridional twisting term /y7., is obtained as a higher order correction to the

/3-advection term /v, by taking into account a correction of the meridional velocity v:

1+ +

The first order correction to / corresponds to the term in concern.
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satisfied for/• ,,- S. This identifies the Intermediate Geostrophic (IG) regime at ei -
4- S < 1 as a regime uniquely characterized by KdV-dynamics. The IG regime was
originally identified by Yamagata (1982) and Flierl (1980).

IG Dynamics

The IG dynamics identified by Yamagata (1982) and Flierl (1980) can be considered
as a generalized-version of the KdV-dynamics with isotropic scaling. In this section we
derive the governing equation for the IG dynamics, and review the numerical results of
Matsuura and Yamagata (1982) and Williams and Yamagata (1984).

The system adopted to derive the equation for the IG system is that of shallow water
theory:

D
i u - (1 + -- y)v = -t/z (6.3.12a)

D

+• v + (1 + -- y)u = -- r, (6.3.12b)

D
+" (q 6 + 'i)(u, + vY) = 0, (6.3.12c)

where D _

a +- a U + vi. (6.3.12d)

(We set 17B 0 in (2.18) and consider only the upper layer in the two-layer formulation
of Sec. 2)

We assume the scaling i -,/2 and i /3, and reduce the system (6.3.12) ordered by
/3, e.g.

e~.U = U(0) +• ýU(1) -- "'

At 0(1) we obtain geostrophic balance:

u(°) = -17(O), v(°) = -° (6.3.13)

At 0(13):

- Yv(°) - v() = - q(1) (6.3.14a)

+Yu(°) + UM1 ) = -17) (6.3.14b)

+ (0) a + V(O) a)71(0) + (1 +V) .
( + u( _ ( . ((u ()- + vi)) = 0. (6.3.14c)

By substituting the expression for u) + v(1) obtained from (6.3.14a, b) into (6.3.14c),
and by taking into account the identity u(°) a27(o) + v(°) L (0) = 0, we obtain the linear
Rossby wave equation:

)77 (0)( f 8x 0,
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which implies homogeneous propagation with phase speed c = g/3/. This necessitates the

introduction of a slow time scale a/lt E 3/Or.
The 0(1 2 )-equations are

i D ( O) (0) (2 ) (

u(D ° - yvM - V = (6.3.15a)

i D(O) V(0) + yu) + u(2) _(2) (6.3.15b)
32 Dt

D-I _(1)i+( +u v() %_)q(0)+
Dt ax

+--(u( + v( 2)) + u,(2)(u(i) + v(')) = 0. (6.3.15c)

By substituting the expression for u. (2) obtained from (6.3.15a, b), and the expressions

for u0) and v(') obtained from (6.3.14a, b) into Eq. (6.3.15c), we finally obtain

- -. 2v2r + -yT/ - J(7,, V2
17) = 0, (6.3.16)

where the superscript (0) has been removed in the final expression. This we denote the
Yamagata-Flierl equation, governing the Intermediate Geostrophic scale dynamics.

The first three terms of (6.3.16) constitute a KdV equation. The fourth term is the
meridional twisting term, and the fifth term is the vorticity advection term. Because of the
scalar nonlinearitj of the wave-steepening term (the second term), the equation represents
an asymmetry between positive (q > 0) and negative (q < 0) displacements. A single
soliton solution is allowed for an elevation (anticyclone) but not for a depression (cyclone).

This cyclone-anticyclone asymmetry is a special characteristic of IG dynamics.
Numerical computations performed by Matsuura and Yamagata (1982) that demon-

strate this asymmetry are shown in Fig. 3.5. Note that the isolated cyclone decays rapidly
by radiating waves (Fig. 3.5(a)), while the isolated anticyclone is stable (Fig. 3.5(b)).

This asymmetry of the IG vortices may hold the key in explaining the observed ro-
bustness and longevity of anticyclones (spots) compared to the cyclones (barges) in the

Jovian atmosphere. For this reason, Williams and Yamagata (1984) performed a series of
numerical computations that interpret the Jovian vortices as IG vortices.

Fig. 3.6 shows the collision of two IG vortices. Here, again, another remarkable
property of the IG vortices is displayed. Unlike the Rossby solitons, the two IG vortices
coalesce together as a consequence of the interactions. They end up a single large vortex,
because, despite the KdV-dynamics ensured by the first three terms of the Yamagata-Flierl
equation, the vorticity advection terms plays an active role during the collision process.

This feature of the theory is reminiscent of the absorption by the GRS of small vortices
which were observed during the Voyager encounter (Smith, et al., 1979). a

3 The detail of collision results depends sensitively to the vortex size, and the IG vortices
can behave both as if like solitary waves and the elastic waves by depending on choice of
the parameters (Sutyrin).
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Problems with the Weakly Nonlinear Assumption

The weakly nonlinear assumption led to canonical solutions. However, there are dif-
ficulties in the interpretation of the GRS in the framework of weakly nonlinear theory.
A crucial assumption of the weakly nonlinear theories is that the phase velocity c of the
vortex is much faster than the typical swirling velocity u of the vortex itself (i.e. I c >> u)'.

Inspection of Table 3.1 gives c = -3 ms- 1 and u --, 100 ms- 1 for the GRS. Conse-
quently, for the GRS the assumptions of weakly nonlinear theory are formally violated.
This necessitates the consideration of strongly nonlinear theory with I c j< u.

A main physical difference of the strongly nonlinear eddies from the weak theories
is that fluid material is trapped within the vortex and is carried along as the vortex
propagates. The strongly nonlinear version of IG theory (GG) will be presented in the
next lecture.

Appendix: The Jovian regime

In this appendix, we present the appropriate scales required for the specification of
the nondimensional parameters i, /, 9 for the Jovian atmospheres (Jupiter and Saturn) in
comparison with the Earth's atmosphere and oceans. The basic physical values required
for the scalings are listed in Table 3.2. Most of the values for Jupiter and Saturn are
well established. The only remaining uncertainties are the vertical potential temperature
gradient dO./dz and the vertical scale D. To obtain conservative estimates, we adopt
the largest possible value of dO,/dz and the smallest possible value for D. We assume
dO,/dz = 1 K km-' for both Jupiter and Saturn. This value corresponds to tropospheric
values for both atmospheres. A tendency towards neutrality is expected at deeper levels.
Hence the value adopted is the maximum possible value. On the other hand, for the
vertical scale D, we simply take a temperature scale height RT/g, which is 20 km and 35
km for Jupiter and Saturn, respectively. A larger vertical extent of the motions is likely.

Fig. 3.7 shows the dependence of the nondimensional parameters on the horizontal
scale L for the Earth (a), the oceans (b), and Jupiter (c). The case for Saturn is not shown
due to its general resemblance to Jupiter. A deformation radius of LR = 50 km is assumed
for the terrestrial ocean. The dynamical regimes QG (Quasi-Geostrophic), IG (Interme-
diate Geostrophic), and PG (Planetary Geostrophic) are labeled at a corresponding scale
in Fig. 3.7 (a), (b). The appropriateness of the IG scale of the oceans is noted. On the
other hand, this simple scaling does not lead to any conventional dynamical regime for
Jupiter. Instead, we find a new dynamical regime denoted TG (Thermo-Geostrophic) at
a scale of 3000 km, with a scaling ,i < i -, /. This scaling is characterized by a very weak

' However, the IG theory is a special case that, though it is a weakly nonlinear theory
in nature, it does satisfy the scaling c - u. Due to a special choice of the horizontal scale
in IG, the leading nonlinearity is due to the advection of the pressure anomaly, which turns
into a trivial statement J(O, 0) = 0 in the shallow water formulation of IG. Note that this
brings a complexity to generalizing the IG theory to a multiple-layer system.
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stratification S <C 1. It is weaker than that required for the validity of IG scaling, and
leads to dynamics completely governed by a thermodynamic equation

Dt &I = 0,

where oq/Oz is the potential temperature (Y is reinterpreted as a geopotential).
The nature of the TG dynamics is considered in Yano (1987b; 1989). This regime

does not sustain any shallow isolated vortices within the deep barotropic shearing flows;
instead the vortex is stretched out by the shear.

It transpires that the recovery of the QG or IG scale requires a larger vertical scale
D, probably least of the order D - 102 km (c. f. Dowling and Ingersoll, 1989).

The major conclusion of this appendix is that the scale-analysis does not work well
to define the Jovian dynamical regime and to narrow down a possible choice for the model
of the GRS.

Table 3.1: Basic Parameters for Jupiter's Great Red Spot (GRS) and the White Oval BC

GRS White Oval
Longitudinal Scale 2.42 x 104 km 9.78 x 103 km
Latitudinal Scale 1.12 x 104 km 5.86 X 103 km
Latitude 210S 320S
Wind Speeds 100-120 m/s 80-100 m/s

(Outer Edges)
Phase Velocity -3 m/s +5 m/s

Table 3.2a: Values of physical quantities

Sg ro a, dO,/dz D U
(s-1) (m/S2) (K/!=) (km) (m/s)

Earth 7.3 x 10-5 9.8 6400 nm 300 K (ground) 2.1 10 10
Jupiter 1.8 X 10-4 27 71000 km 140 K (500 mb) (1) 20 100
Saturn 1.6 x 10-4 12 58000 km 110 K (500 mb) (1) 35 100

Table 3.2b: Values of non-dimensional parameters and Rossby radius for 40 = 300

Li (km) L 2 S (km2 ) L, (km)
Earth 1.4 x 102 1.3 X 106 1100
Jupiter 5.6 x 102 2.4 x 106 1500
Saturn 6.3 x 102 5.2 x 106 2300

..__44A
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Figure Captions

Fig. 1.1: Different views of the internal dynamics of Jovian planets. a) Columnar
convection cells (From Busse, 1976). b) Boundary plumes. c) Taylor plumes.

Fig. 1.2: Structure of vertical normal modes for Jupiter for Rossby radius of defor-

mation of 735 km (solid line) and 155 kin (dotted line). (From Achterberg and
Ingersoll, 1989).

Fig. 3.1: Examples of single Rossby soliton solutions. The channel domain -ir/2 <
y <i r/2 is assumed. (From Redekopp and Weismann, 1978).

Fig. 3.2: Interactions of two Rossby E-solitons. (From Redekopp and Weismann,
1978).

Fig. 3.3: The classifications of the Rossby solitons on the (i, S)-plane. Responsible
nonlinearities leading to a KdV-type balance in each domain are depicted along
with an appropriate naming of the domain. The particular scalings adopted in
the previous studies are represented by small closed circles with the name of
the authors. The three typical dynamical regimes (QG, IG, PG) defined for
the geophysical flows are indicated by open circles. (From Yano and Tsujimura,
1987).

Fig. 3.4: The domain of the validity of the KdV-type Rossby solitons on the (fi, g)-
cross section. The invalidated domains are sh"aded with an indication of a reason.
The broad curve represents the scalings lead to a KdV-type balance with an
isotropic scaling (i.e. r = 1). In the upper part to the broad curve, the longitu-
dinal stretching (i.e. r <z 1) is required for the KdV balance, while in the lower
part to the broad curve the north-south elongation (i.e. r > 1) is necessitated.
In the shaded ares, some remarks to explain the effects to destroy a complete
KdV balance are added. Some scalings adopted in the previous studies are also
depicted. (From Yano and Tsujimura, 1987).

Fig. S.o: The cyclone-anticyclone asymmetry of the IG vortices: the stability of (a)
the cyclone, (b) the anticyclone. (From Matsuura and Yamnagata, 1982).

Fig. 3.6: Collisions of the IG vortices: anticyclone and anticyclone within an anticy-
clonic flow. (From Williams and Yamagata, 1984).

Fig. 3.7: The dependence of the non-dimensional parameters on the horizontal scale
L. (a) Earth, (b) oceans, (c) Jupiter. (From Yano, 1987b.)

Notes compiled by Richard Holme and Petros Ioannou
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Lecture 7 - Dynamics of Vortices - Continued

Compacting Conditions of Vortices

To investigate the longevity of the analytical vortices obtained in the previous lecture
it will be informative to obtain the compacting conditions for the various flow regimes

studied. These are the conditions for wavelike disturbances to be evanescent with distance

from the vortex, in which case there may be no radiation of energy to the far field.
For Rossby wave radiation the dispersion relation is,

P (7.1.1)c- T2 +t F,

with compacting condition, x 2 < 0 as r --+ oo in the case of zero basic flow. Defining
similar properties for a sinusoidal basic zonal flow, u = sin(ky), so that,

= - (7.1.2)

P• +T'

for the mean flow "phase speed", Z, and applying a matching condition c = Z, gives,

F > k2 +P, (7.1.3)

as the compacting condition. From this it is required that F > k2 ,,Z 0(1) (so that L > LR:
the Intermediate Geostrophic regime) and that F > F ; 0 (barotropic basic flow as in the
model of Ingersoll and Cuong,1981).

Various laboratory analogues have been created to investigate large vortices in rotating
systems (figure 1). These are summarised in table 1. Note that the only case satisfying
the given compacting condition of a baroclinic vortex in a barotropic basic flow is that of
Nezlin et al.

Numerical Investigations.

In a numerical simulation of Read and Hide's experiment (figure 2) it can be seen
that the vortex breaks down by radiation of energy to the basic flow. In this case the ratio
of upper layer depth to lower layer depth, 6, is greater than zero, implying a baroclinic
basic flow, and the froude number, F, is greater than one, implying a baroclinic vortex.
Vortex collapse is expected since the system does not obey the compacting conditions
stated previously.

Further numerical simulations illustrate the influence of varying F and 6. The analogue
of the Ingersoll/Cuong (1981) model is that of figure 3a in which 6 = 0 and F=5: it can be
seen that the vortex and basic flow persist. As F decreases (F=1 in figure 3b and F=0.5
in figure 3c) at 6 = 0, the vortex decays, progressively faster with F. The radiation is
asymmetric due to the effect of /.

The implication of these examples is that a persistent vortex such as Jupiter's Great
Red Spot must have a high F. It is not sufficient to consider the vortex or the basic flow
as being stable in isolation as their interaction may yield instability. It is also essential
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to be aware of the lewer layer dynamics when this layer is finite. The physical tendency
will be for a baroclinic disturbance (isolating and evanescent) to develop into a barotropic
standing wave which will then radiate. The timescale for this decay will be 6-1. Energy
may be radiated to the far field in the lower layer while the upper layer far field appears
undisturbed. In figure 4a (b = 0.2 and F=5) the vortex decays without apparent radiation
of energy into the upper layer basic flow. Figure 4b shows the lower layer eddy flow for
this example and shows radiation of energy away from the locality of the vortex. Graphs
of vortex decay rate with varying 6 and F are given in figure 5. The decay time of vortices
is 0(b-1). An example is also given of the barotropic breakdown of a flow containing a
baroclinic eddy (figures 6a, 6b; b = 0.2, F = 5,/6 = 0.3).

The role of the deep dynamics of Jupiter's interior may have a strong bearing on the
stability of the Great Red Spot. The value of / for deep cylindrical flow would be different
than that for the weather layer. A further numerical simulation illustrates how differing
values of /3 for the two layers may stabilise a system which would otherwise break down
(figure 7; 6 = 0.2, F = 5, #1, = 0.3, 82 = -2). It remains an outstanding problem to work

out a compacting condition for a deeply rooted Great Red Spot.

The Flierl-Stern-Whitehead Theorem.

For a steadily-propagating "strongly-compacting" vortex in a shallow (ie HIL << 1),
primitive equation -yv item it is shown that,

0/ pkldsr = 0 (7.3.1)

where,
(7.3.2)

As an exercise this theorem may be proved for a QG 2 layer system (Hint: multiply by x
and integrate over the whole horizontal domain). The theorem becomes,

1 1
-- > < 0 >= 0. (7.3.3)

F, F 2 2



85

Another Look at the Compacting Condition - a Unified View for Weakly and
Strongly Nonlinear Theories

The QG theory follows,

±+ J(0, .)IQ = 0. (7.4.1)

In the weakly nonlinear theory,

0 = j(y) + eo, Q = 4(y) + eq, (7.4.2)

from which, to first order in E (the zero order part being trivial),
0

[5 + J(O,.)]q + J(4, Q) = 0 (7.4.3)

For steady, propagating solutions, write A = -c- and obtain,

J(Oq - AO) = 0, (7.4.4)

where A = 8q/84 and t = 0- cy. From this obtain, using the expression for q(4),

[A - (F + A)]q + Fq 2 = 0, (7.4.5)

or,
(A + k2 )0 + F4 2 = 0, (7.4.6)

where k2 = -(F + so that,

C U + F" (7.4.7)

It is apparent that Q, is an equivalent/1. The sign of k 2 will determine the nature of
solutions to (7.4.4). A 'potential well' of k 2 > 0 bounded by regions of V2 < 0 is of
physical interest in describing compacting systems.

For the strongly nonlinear theory, write,

J(A, Q) = 0, 0 = 0 - cy, (7.4.8)

as before, so that Q = Q(&). Then,

Q( -) • Q + 1 O2d + o(t 3 ) (7..9)
di/k 2 dýb2

which gives,

[A - (F + A)] - 1A' = (Fc - #)y - F¢ 2  (7.4.10)
2
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where A = dQ/db. A compacting solution requires F + A > 0 in the exterior field while
F + A may be negative locally. Note that a sufficient condition for steady flow, by Arnold's
2nd theorem is now that F + A be everywhere of the same sign.

The "modon" formulation is that in which it is taken that Q = A/ in the above,
where A is a constant and

F+TA= r>ro (7.4.11)

This has n-pole solutions of the form,

S= .Jn(kr) sin(nO); r < ro (7.4.12)

iK = EK(pr) sin(n0); r > ro.

Other Compacting Conditions.

The Yamagata-Flierl system,0 ON 0 a 277+22D ?
i8 0 S f ax: -. 1777 -• +. ---- - J(7, V2rl) =0, (

may be shown (take -! = -c and linearise) to be,

[V2 + - 010= 0. (7.5.2)

It can be shown that the system is radiating at, say, y < y, (Nycander and Sutyrin, 1992).
The generalised geostrophic system is a strongly nonlinear form of the intermediate

geostrophic equations:
iu, - (1 + ic + 1y)v = -B,

ivt + (1 + i + /y)u = -By (7.5.3a, b, c)
D , 1D 0 + ( 1 + O)YU. + 73Y) = 0,

where = v - uy, B = + W and K = -"-- . From these,

B= + B vt

+ + iu+ (7.5.4a, b)
B.,+ iut

1 + ic+Py
These are applied iteratively. The first approximation is,

U=- B,
+ OY (7.5.5a, b)

1 Bz

The next approximation (substitute these back into the previous forms) give an improved
expression for u and v which may be rearranged to yield the Sutyrin-Nycander equation.
This equation system contains a class of semi-analytical solutions similar to the modons
in QG formulation.
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Stationary Barotropic Modon Solutions.

The phase speed, c, for the modon fornmulation already introduced (see Eq. 7.4.11,
7.4.12) and the froude number, F, are both taken to be zero, so that

(A - A)V/ + (AU +) 3)y = 0 (7.6.1)

implying AX + /3 = 0. Consequently, a westerly flow will be radiating and an easterly
flow compacting. It is left as an exercise to derive the dipole modon solution under this
formulation, illustrated in figure 8. Figures 9 and 10 illustrate a possible physical example
of modons in the form of an atmospheric "blocking high".

Functional Relationship for the GRS and White Ovals

Analysis of Voyager data by Dowling and Ingersoll (1989) determined the relationship
between potential vorticity (Q) and the streamfunction (V)). This effort indicated that
Q(V/) could be approximately modeled by piecewise, linear functions for four different
regions: the interior region (I), the outer ring of the spot (C), and the northern (N) and
southern (S) exterior regions (figure 11). In terms of ,Q/160 + F, this system can be
modeled by:

6Q 2, r < rl (0) interior
--- + F ;z 0, ri(O) <r<r 2 (0) ring (7.7.1)

-k 2 , r2 (0) < r exterior

This simple modelling of the Jovian vortices suggests several interesting analytical problems
relating to these spots which could be undertaken. An intriguing point in this observa-
tional analysis is that the interior is evanescent and the external region is of the radiating
structure.

Exercise

Derive a GRS-modon solution using the above assumptions for the following cases: i)
QG case (cf Yano and Flierl) ii) GG case (replace k by B, etc.) (cf Nynander and Sutyrin,
1992). Of particular interest is the dynamical role of the 'neutral' ring, the stability of the
system (cf Arnol'ds theorem), and the estimate of F9 obtained from fitting the analytical
solution to observational data (c. f. the project report by Doug Parker in this volume).

Exercise

Extend the modon formulation to the unsteady case. The typical situation is for a
vortex to radiate energy in the form of Rossby waves, causing the vortex to decay. In
trying to apply the modon approach to this situation, useful limits may be the case where
6 approaches zero, or when i3 approaches zero (c.f. Flied, 1984). An extension of this would
be to investigate the Rossby wave decay of the GG vortex, where the vortex is baroclinic
while the mean flow is barotropic and quasi-geostrophic. In this case, a suggested approach
is to look at the limit where HI/H 2 << 1.
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Contour Dynamics

For time-dependent 'modon' problems such as those previously suggested, the easiest
approach with which to determine the tine-evolution is contour dynamics. The '1iodon'
formulation says:

Q= Q0+- (7.8.1)

with both Qo and bQ/lbV, piecewise constant. By setting ,Q/6t4 equal to zero, the formu-
lation reduces to a vortex of constant potential vorticity Q, in a constant background Q0.
With the vortex boundary defined by:

rb = (xb(t),yb(t)) (7.8.2)

the evolution of the vortex shape is calculable from:

ib = -9 O(Xb, Yb,t) 0ax' (7.8.3a, b)

Yb =•--V)(-b, Yb, 0

where
020 Q, Irl< Irbi: (.

1) Qo iv> Ir: 0(7.8.4)

Alternatively, this can be expressed by:

N

V)(r,t) = - Jf QiG(r,r')d2 r' (7.8.5)
j=1

for a N-vortex system (with each vortex area is defined by Q7Z (j = 1, N)), where the
Green function G(r, r') is defined by

Q,[G(r, r')] = 6(r - r') (7.8.6)

with an operator Q, defining the potential vorticity.

Exercise

Derive the explicit form of the Green's function in the two-layer QG system.
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Vortex Mergers

The merging of vortices is a common feature on Jupiter, most notably with regard
to the Great Red Spot absorbing small storms in its latitude range. It is possible to
do a wide variety of numerical simulations of vortex mergers, studying the effects of the
relative size of the vortices and whether they are baroclinic or barotropic. A potentially
realistic simulation of the process by which the GRS merges with small eddies may be
done with a large (F = 2 for example), baroclinic vortex and a small barotropic vortex
within a barotropic shear flow. With such simulations it may be possible to determine the
conditions needed for vortices to merge. Studies of these conditions in the case of no shear
flow have been undertaken for equal size vortices by Polvani, et al. (1989) and for different
sizes by Yasuda and Flierl (1993).

Exercise

The study of the vortex merging conditions within shearing flows is relevant to a
problem with the size distribution of vortices on Jupiter. If the larger vortices are the
result of multiple mergers of smaller vortices, it would be expected that the number of
vortices of a given size would increase monotonically with decreasing radius. However,
the actual distribution of vortices on Jupiter appears to have a peak at some radius, after
which the number of vortices of a given size decreases with decreasing radius. If some form
of merging function were known, then the following -quation would be applicable:

•N(r) = M(r',r - r';r) - M(r,r' - r;r') + S(r) (7.9.1)

where N(r) is the size distribution, M is the merging function, and S(r) is the actual
distribution of vortices on Jupiter. Ideally, the difference between the expected distribution
and the actual one would be explained by the rapid merging of smaller vortices up to some
length scale, leading to a relatively low number of small vortices. Therefore, an analysis
of vortex merging in shear flows from the limit of r, >> r 2 to simulations when r, = r 2
could lead to a merging function that may be realistically tested by observations of the
Jovian atmosphere.

Cloud Dynamics on Jupiter

One of the many basic problems remaining in geophysical fluid dynamics is the motions
of clouds in the atmosphere of Jupiter, in particular the vertical motions and structure.
This is a highly complex problem, involving radiative cooling, latent heating, precipitation,
adiabatic warming and cooling, and various atmospheric layers of different moisture content
and temperatures. The various features of this problem are shown in figure 12, and a
possible modeling approach in figure 13. This is just one of the many phenomena whose
dynamics need to be understood in a basic manner before a detailed, successful Jovian
global computational model can be developed.
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Cloud Dynamics on jupiter

Adiabatic Cooling

What are the
basic dynamics?

Latent Heating I

Adiabatic 'D 0 rcptto ?
W • ;-.armngn

• o •Parameterization

•Hot, Moist i C

- - -- - - - - - - - - - - - Layer

- Resupply ?

Figure 12 Schematic of the Cloud Dynamxics on Jupiter
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Lecture 8 - The Atmospheres of Mars, Triton, lo, Mercury, and the Moon

Andrew Ingersoll

Frost-Vapor Equilibrium

The states of these atmospheres are determined by the vapor-frost equilibrium of the

main constituents of the atmosphere. The existence of frost regulates the pressure and

temperature of the atmospheres as the season changes. In today's lecture, we will describe

the qualitative features of various planetary atmospheres as a result of this vapor-frost

equilibrium and discuss simple models to gain a better understanding of these atmospheres.
For the planets and major satellites of the solar system that have atmospheres, we list

them in the order from thick to thin along with their main chemical constituents:

Jupiter H2 , He
Saturn H2 , He
Uranus H2 , He
Neptune H2, He
Venus CO 2

Titan N 2

Earth N2 , 02

Mars CO 2

Triton N2

Io SO 2

Mercury ?

For all the objects below Earth in this list, the atmospheric pressure is controlled by
the vapor pressure of frost:

P = Pv(T), T= Tj

and the temperature of the frost is controlled by radiation and sublimation:

Tf = (1 - A)F cos +Lrh

where m = mass per area of frost, and L = latent heat of vaporization.
Typically, thick atmospheres cover the globe and the atmospheric pressures change

little with the seasons. They also have subsonic winds and short mean free paths. Thin
atmospheres are a totally different story. It is possible that they only exist on the day
side or over volcanoes. In this lecture, we consider the atmospheres of Mars, Mercury,
the Moon, Triton and lo. In a increasing order of atmospheric thickness, we have the
Moon and Mercury with the thinnest atmospheres, lo and Triton with medium thickness
atmospheres, and Mars with the thickest atmosphere.
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Thin Atmospheres: Moon and Mercury

The Moon's and Mercury's atmospheres are created primarily by chiar•,d particles
and by ultraviolet rays from the sun bomnbar(ling the surface, and by comets an(l asteroids
crashing on the surface. Consequently. these two atmospheres are extremely transient in
nature.

The molecules in the atmosphere hop over the hot surface over tens of kilometeres
at a time and eventually stick to cold surface. The mean free path is long and vatpor
pressure is too small (at T = 102 K, the evaporation rate into the vacuum surroundings
is lcm/109 years). The shadowed ice on the Moon and Mercury are eventually destroyed
by Ly a radiation from the interstellar medium. (see Morgan and Shemansky, 1991). Na
and K are detected (as seen from resonance scattering); however, 0 is not detected (it is
possibly lost from the atmosphere right after being created). We also see polar frost ill the
shadowed portions of craters where the temperatures are less than 100 K.

Mars

The Martian atmosphere has an atmospheric pressure of 6 mbar and a frost tempier-
ature of 148K (at the polar caps). The predominant gas in the atmosphere is CO 2 . The
seasonal frost thickness is about 1 meter, which makes up about thirty percent of the mass
of the atmosphere. The pressure and frost temperatures are almost constant during the
years; however, pressure and temperatures do vary with obliquity on a time scale of 10'
years. Averaging over a year, for which rh = 0, we see that

T4= - (1- A)F®sinI1

f 7r

where f3 is the obliquity (currently 25 degrees), but can vary up to 25 ± 10 degrees and A
is the visual albedo of the caps. We observe a sensitive dependence on A and 3.

(See Mars for reference.)

Triton

Triton's atmosphere has a pressure of 15pibars (RSS), a temperature of 38 K (IRIS),
and the dominant gas is N2 (UVS). These values are consistent with solid-vapor equi-
librium. Triton has a thick atmosphere (which means that the pressure is approximately
constant with respect to both latitude and longitude). And since the frost temperature is a
function of pressure only, it is also about constant over a range of latitudes and longitudes.
On average,

T = Tfr =[(1A)4 ] 1/4 = 38K

for A = 0.7, c = 1
In summary, in very thick atmospheres (e.g. Mars), the pressi -e is almost constant

with respect to the seasons. But in very thin atmospheres (e.g. lo) the pressure varies with
respect to both latitude and longitude (in the case of Io, up to 5 orders of magnitude).

(See Ingersoll, 1990.)
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Io

We see volcanic activities and eruptions up to 200 kil high above the surface. (See
slides of Io.) The lava lakes foirmed by volcanic activities are typically about 400 K, and
are thought to be molten sulfur. We see no iipj)act craters, leading us to believe that
the surface of Io is, geologically speaking, young. The composition of the atmosphere
has been measured and lo's atmnosphere consists primarily on SO 2. The pressure and
temperature vary during the (lay. Its night side atmosphere is an cxosphere (i. e., no
collisions). Maximum cooling is achieved via evaporation. The maximum velocity we see
is about 300 m/s, which is 2.5 times the speed of sound.

There is no global atmosphere. However, locally, there are atmospheres at the subsolar
point and above each volcano. Let's see how these local atmospheres are created.

The maximum flow speed is when all the thermal and gravitational energy is converted
into kinetic energy:

2max -- Ethermal + Egrav = cpT.
2

So
Fevap'rr2 < 2 7rrLpgasVinaxH,

where Fevap is the maximum evaporative cooling rate, L is the latent heat of vaporization,
and H is the scale height of the atmosphere.

The frost will heat up if

(1 - A)FocosO > Fevap,

and we have a local dayside atmosphere. Similarly for volcanoes, if the rate at which S02
is created is greater than 2 irrpgasVmaxH, a local atmosphere is created over the volcano.

The internal heat flow of lo has been measured by summing the 400K radiation coming
from the lava lakes and has a value of 1 - 2 watts/m 2 . It comes mainly from the tidal
dissipation with the other satellites. This is one hundred times the Earth's internal heat
flow and is probably enough to drive the volcanoes.
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Frost Driven Flow I

Let's look at the atminosi here of 1o in more detail, assuming that the flow we observe
is frost driven. I

Right away, assuming that the temperature is regulated by solar radiation only. we
have

(1 - A)F.,cosO. 0-= 7 I
where 0 is the co- latitude from the subsolar point and T 5 is the surface tenlperature.

Let us incorporate the effects of frost. We vertically integrate the horizontal flow away
from 0 = 0, assume the vertical structure satisfies hydrostatic and adiabatic equilibria and
that the flow has constant velocity with respect to height above the boundary layer (with
a scale height of approximately 10 km).

Then the conservation equations are

1 =(sinP P v) =(E ) Ir sin000 sin 9 =E7aPv-

1 (sin 0 v2t -- 1 0 I Pdz +r,

rsin000 9 r00

rsin_ _ [sinO v - + cpT)= Q, I
expressing the conservation of mass, momentum and energy. Pv(Ts(O)) is the given vapor
pressure of frost. Our task is to fin I P(O), v(0), T(O) subject to v(0) = 0 and T(0) = Ts(0).
We need a downstieam boundar) condition to determine P(0) and here we assume that I
P -b 0 downstream. The numerical solutions are shown in Figure 1.

Properties of Nuinexical Solutions I
Flow speed reaches 300 m/s (Mach 4) at 0 = 750 and the flow dies when P = 10-11

bar (i. e.. when the mean free path is approximately the scale height) at 0 = 800. The I
hydraulic jump in Fig. lb comes from a nightside gas (which we currently specuilae to be
02).

Let "0 Pdz = -Tp/ 3 , where/3 = R for adiabatic atmospheres. The maximum
9 R+cP

flow speed is given by T2 + cpT = constant, so v --+ Vmax = [2cpT(-)] 1
/
2 as T -4 0. The

local Mach number is infinite; however, the Mach number calculated using actual value of I
T(O) is about 2.2. The key to give us high flow speeds, as in rocket nozzles and solar wind,
is expansion as we can see by rewriting the momentum equation: I

1 0 [ P(v ) /cpTPsi 0sinO( + O3cpT)- + -r,
r sn I g 2gr tan 0

where the first term on the right hand side is the force. When 0 < 0 < i, the expansion
acts as a downstream force--increases the momentum flux.

The hydraulic jump is given by

I
I
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-vP - fma, (v2 + 1icpT) Pfo, -V(-1v 2 +cpT) = fe,
g g g 2

S-2(2 - )fm.fj] 1/2

f..(2 - 1)

The positive root gives supercritical flow; the negative root, subcritical flow.

Solar Wind Equation

Let's look at the Solar Wind Equation as applied to this case. Assuming hydrostatic
equilibrium,

1ldP GM
0 = --- -

p 8r r 2

P = RTp = c2 p,

where c is the speed of sound (c 2 is constant if T is constant). This gives us P as a function
of r:

P(r) = P(oo)eGM/c 2r

However, we cannot have pressure at infinity; this is the typical failure of hydrostatic
equilibrium descriptions of isothermal atmospheres.

We must add outflow. Let us patch our hydrostatic equation with a v2- term. And
let us further assume that we have a constant outflow: F = pvr 2 = constant

av 1 ldP GM 2V i i- -P = PC2.
Vrr p r2 I

The radius at which the flow reaches supersonic velocit- (v = c) is r0 . We can rewrite
our equation with rescaled variables: w = v, R = M, -1 - 1T, -ý = 1
at r =r o .

(W 1 )-9w 2 It

where u = GM/roc2 . Right away, we notice that the equation is singular at R = 1 (where
w = 1). The equation is nonsingular only when the right hand side vanishes at R = 1,
therefore, p = 2, i. e.,

C 1(2GM)1/2 1 GM
= = -Vesc, or r 0 = -j-

This is the only solution that satisfies P -- 0 as R -+ oo. L'H6pital's rule gives us that
ORW = 1 at R = 1, so integrating we get

1 w2 = 2 +ln(wR 2) 2
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with uw = w(R) and u,(1) = 1. This is an implicit equation for w'(R), which we can solve.
As R - oo, u' --+ oo logarithmically and p0 = 1T+ 0 faster than -.

However, lo is not exactly the Sun; the solar wind description of the flow on lo is
good, except that, for lo, the 'wind' expands horizontally, not spherically outwards, and

it expands from the subsolar point. I

References
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FIG. 2. Solution with subsolar temperature of 130°K.

For other parameters, see Table 1. The velocity, tem- FiG. 10. Change of V, T, and log P across a hydrau-

perature, and pressure at the top of the boundary layer licit, The solid curves are the same as those of Fig.
are Vr T, and P. respectively. The Mach number and 2, at show the values in the supersonic flow ahead of

evaporation rate are M and E. The scales are indicated th- iump. The dashed curves show the values immedi-
along the ordinate. Thus, the units of V, T. M, and E atta> ehind the jump. The difference between the
are 40 mlsec, 20°K, I and 0.2 x 10" molecules/cma/ dashed and solid curves at angle 0 indicates the size of
sec, respectively. The logarithm of P is to the base 10, the transition for a jump located at that angle.
so that log P = -8 is a pressure of 10-3 dyn/cm'.

Figure 1: Plots from Ingersoll et. al. (1985) showing numerical solutions to the Io
atmospheric model. The velocity, temperature and pressure at the top of the boundary
layer axe V, T and P. The Mach number and evaporation rate are M and E. In (a) and
(b) the solutions are for a subsolar temperature of 130K and antisolar temperature of 50K.
In (b) the effects of a hydraulic jump are evident with the dashed lines corresponding to
the values of V, T and P that would occur on the subsonic side of a given colatitude.
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Lecture 9 - Deep Baroclinic Jovian Dynamics

In the case that the dynamics of Jovian circulation may be dominantly that of motion
on concentric cylinders, we investigate the necessary momentum and vorticity balances of
such a planet, as well as simple instability criteria, comparing all the time to traditional
thin weather-layer O-plane systems.

The Anelastic Equations

This system serves as a basis, appropriately, since we intend to account for verti-
cal structure, at the same time being unconcerned with sound waves. The enegry and
momentum conservation equations are:

- -Vp = -VE+ TVSp

where E = e"thalPy and S = "t"P andmass mass

Vp V g =-V(E + 9 )+ TVs
P

where INg is the gravitational potential energy per unit mass. For our rotating frame, this
can be thought of as the ordinary Newtoninan gravitational potential minus the centrifugal
potential , so:

4bg -- 4]NG Q2 •r 2

2Now let Po + To + 4I, refer to a uniformly rotating planet with s = so = constant. This

basic state is hydrostatic:

0= -1Vp0 - V'(I9 = -V(Eo +4)

So Eo + 4ýg = constant but Eo = Eo(p, So), so Eo,po,po are all functions of Itg only; i.e.
the basic state is adiabae ic, hydrostatic and barotropic. Perturb about this state, keeping
the leading order balance.

dt~+ 2flx V - S 1 VTo

V. (pv) = 0

dS5
dt 0
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Coordinate System

Now we choose a suitable cylindrical coordinate systemn in (0, - r, z) which forms a
right-handed system with velocities (u, i, w). This is like any other right-handhed systein.
in this case:

0 10 0 0
Ox r 90 ay Or

So we will have:
r aO r 09i..(Vxv)= = •"- ra + -- (rin)

V'v2= D - (rv)
" D 9O r Or

The equations of flu acceleration are:

du uv 1 a01
dt r rO9

dv u 2  09. OTod-t+ - +2 2u = -- + SJ
dt r Or Or

dw O l 07T0
dt - -z - Oz

D - -r 1 + (po w)=O

Vorticity

We can extract a vorticity equation from the above; take i- (V x + 2nv) to get:

d• 1lOw Ov _1 0S 1O07"d--- + ( 2Q + ( )D + -I. -aw" at, -= 1 ,.a
dt r aO 8 rB O a?



119

Nondimensionalization

So far this analysis has been exact; now we adopt the scaling:

18 1 8 1 8 1~ '-1 a 1 and a-'- 1

r O r' -z r' r L

when a acts on (v, S, 41) but

8"r
when applied to (p, T). Since r represents the planetary radius, it is related to our length-
scale: L << r. From the continuity equation, we see that the components of velocity are
related as: 

Lu ~u, v '~ -u and u <«<2QL
r

The vertical velocity, w, can be scaled as in quasi-geostrophic theory, assuming:

dt- ~ 2QD where U and d U

so D 2fLUr << and the two terms in D (each of order u) nearly cancel. Then

DV ap 10aD = r - - (pw)

but the first term scales like:
v p L U
pot r r

with the second term having the scale

10 ap z(Pw)~rI pz r

and therefore the vertical velocity satisfies

I L
r

which is also consistent with the boundary condition at the surface of the sphere. This
scaling is self-consistent if

U L

2QlL r
The vorticity equation can be scaled by comparison of C and 2fl.

d( +- 2 -D r1 0 8r

Itr0
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If we use this same scaling to examine the niomlenttilix equations, we get:

1014)

04 0

2Qu +S-

Notice that this is nearly geostrophic, but for the last terin. So we let S, S(TO) +
S2(0, r, z, t) where S is the barotropic part. Now

,9r -o T

and similarly

S(O)r = [ 9(t)dtj

in the 4 equation. Then

-29v - € 0=(D+ T S(T)dT
r 09 j

2Mu = ao + S2-'T- and

d( +__ 1 0S2 0To
dt r+ o r•--

Assume the S2 term in vorticity equation is the same size as other terms, e.g.

d( U U S 2 TO
dt fr ý r2

then
S 2(OTo/Or) U2 /L U «

2QU 2QU 2--<L

and we have geostrophic balance:

04I' 104' . _.

U--b, •-r-9' 4-'

and

so
d( a( 04' 1Oa( 1O4O _91 ( a

+ -r r r Or - +
sodt &• +a Or 1 5 0 r • 00 .....
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A Potential Vorticity

Is there an interesting potential vorticity in this system? From now on, we replace S 2

by S', TO by T and p0 by p. So now, we rewrite our equations as:

d7+ 29 [ 1 a#p op -(pw) = - a- o
Tt lpr aO r -P -z' J r aOor

we need to simplify this by solving for each term explicitly. From the previous section, we
know:

Tz az
and:

dS' dS ( l1Q ff T wO)=\
-- + dT r8 o0 r +W ) =0.

from this last equation, we can solve for w, but first we solve for:

S' = 2Q2 0•P Oz5' =

employing a convenient simplification, referring to figure 1, in that the coordinate variables
r and z are related as: cot(O) = I. So the RHS of the vorticity equation above can be

rewritten: IOS'8T 2•0282 0z'

r 08' r a80z OrIT

We know from the scaling convention that we followed, that S, p, T, etc are independent of
9 and vary with r and z on the scale of 1. So they commute with:

d a 1(• aOp n )

-dt atrV a 490 a**

So now we find w:
1i 8 r 1 Oz dS'

w r 90 z dS/dT 0f dt

such that we can find the last term on the LHS of the equation for Ld.dr"

o (PW) =a P - 2nT az q

The vorticity equation can now be rewritten:

_ _ 5z 8P r8T r- z1z 8 p az z-
SO *ý7z ± -5--zP=
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We recognize that 5 > 0 and ' < 0 in the northern hemisphere, and the opposite
inequalities hold in the southern hemsiphere, so the Brunt-Vaisaala frequency is:

N = [5z 9z 4 Q2 I

Recalling that our zonal coordinate is captured in 0 and the meridional coordinate can be
related to r and the latitude: dr = dy sin 0, we can see that the o*-• terms are analogous
to the 3v terms in the well known GFD treatment of potential vorticity. Referring again
to figure 1, we use the following relationships:

1 0'I
r 00!

and
Op Op Op r rOp= 2r', - = 2zp' so - = -z

to express the fly terms as:

vr Op r Oy 1 a pvr

S[pz oz (

=2,r =,a(,r 2 )

So we get the potential vorticity conservation:

dq _Oq I
dt 8t

where
1 a (4p 2 0a'k) + r 2

p•z N 2 Oz + 2

From this we could easily recover the meterological limits using the coordinate relationships
above.

Boundary Conditions

We require that there be no normal flow out of the planet surface (with outward
normal = fi); but fi is parallel to VT, so we have:

v.VT- 1O +waT =0
r O0Or Oz

or r
0 dS' Oa (ý j all

as a boundary condition.

I
I
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Barotropic Case

In this limit, we see that 5 o 0, but from the vorticity equation, we have:

d( d+ [ a ( 4pO2 a')I + 2,,- r 0

5-7 T---z

so as the denominator approaches zero, so must the numerator, and therefore . = 0.dz
Again, we commute - and o, multiply by p and integrate in z from -h to h; here ±h
describes the top and bottom where a z-collumn intersects the planet surface. If we define
M such that:

M = j pdz
h

then the previous equation can be integrated with appropriate boundary conditions to get:

d( 2D dM
d- + -M dv = 0

where
1 a 0l a2% 1 ai

5ara rOr~ ~ ~ o0 7r

Baroclinicity

How large are S and S'? Recall from our scaling that

S'T ~ 2f1UL

It is a reasonable assumption to make the lengthscale L the same as the deformation
lengthscale LD, so:

ST ~ (2fU) 2 .

and we see that the following relation holds:

S' U L
=- ~ 2_L - <<1.
S 2QL r

But we also see that:
as' are a.3
j r T 8- 9Z

so isotherm slopes which are not horizontal are allowed, e.g. figure 2.
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Instability Criterion

Following the method of Rayleigh, we perturb some reference streamufumictiox+ 'I ly
adding a small term V', further assuming that the lprturbations arc normal mode likV,
so:

' cF ein(O-cl)

where c is the angular phase speed of the (possibly unstable) mode. The perturbations; arc
described by the equation:

-- ++ (4pz N )] + rcr)'F =0

Now we treat p and N 2 as functions of z only, multiply the previous equation by pA'*
and integrate, applying suitable perturbation boundary conditions at the surfaces.. .finally,
taking the imaginary part:

ciJ rTp!N:icI dr dz= 01, ar• IýU _ C12

So, for instability, the integral must vanish, and therefore, -1 must change sign. This is
8r

basically the same as a barotropic stability equation, except that in this case, the local
(potential) vorticity is not augmented by f# effects, but by a term that seems to encompass
collumnar depth terms as well as variations in planetary vorticity. Planetary geometric
effects can therefore dominate planetary vorticity variation effects, and in this "deep"
analysis, it is suggested that instability requires eastward jets.

Notes compiled by Phil Yecko and Qingping Zou
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Initial Development of Eddies in High-Speed
Zonal Flow: One Interpretation

for NTB Activity of Jupiter

Tadashi Asada
Kyushu International University

Peter J. Gierasch
Cornell University

and

Toshio Yamagata
Department of Earth and Planetary Physics

Tokyo University

The initial developniwnt of an anticyclonic eddy in a high speed jet flow has been
examined using a 2-layer riAd-iid model for incompressible fluid governed by the shallow
water equations. In the case of large Rossby deformation radius an inertial gravity wave
can propagate in all directions, but in the small deformation radius case the gravity wave
propagates only in the upstream direction. In the latter case, the phase speed of the
internal gravity wave is less than the zonal flow speed, and latitudinal propagation of
the wave seems to be prevented by the strong shear region both north and south of the
eddy.

This behavior of the inertial wave seems to have some common features with the
dark spots of the North Temperate Belt of Jupiter, which is the latitude of the fastest
eastward zonal flow in Jupiter. These spots appear only west (upstream side) of the
bright spot, and move westward relative to the spot.

If our hypothesis that the dark spots are due to an inertial gravity wave is valid, it
suggests small values of the Rossby deformation radius.
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Timing Maps and Pulsatile Chaos

N.J. Balinforth

Solitions or pulses can arise from partial differential equations (PDEs) as exact travel-
ling wave solutions. They also describe solutions of ordinary differential equations (ODEs)
which model systems that "burst". Recent asymptotic methods have shown how to cora-
pose multi-soliton solutions or pulse trains for such equations. These take the original
differential equation and represent the pulse train as a superposition of single-pulse so-
lutions. Each of these solitary solutions correspond to homoclinic orbits of an ordinary
differential equation (this being either either the original equation itself, or an associated
equation derived from the original partial differential equation on introducing a travelling-
wave ansatz).

On introducing the superposition into a PDE one finds a set of ordinary differentia'
equations governing the temporal evolution of the relative locations of the individual pulses.
These centroids are forced to move because each pulse dynamically interacts with its
nearest neighbours. When the pulse train is steady, the set of equations reduces to an
algebraic map relating the nth pulse spacing to the (n + 1),h, which is what one also
obtains when substituting the superposition of single-pulse solutions into an ODE.

The map provides a powerful method to analyse pulse-train solutions. This lecture
took an example ODE, examined its various homoclinic orbits in parameter space ("the
Zoology of Homoclinic Orbits"), applied and assessed the asymptotic multi-pulse method,
and explored the different pulse-train solutions.
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A New Roll-type Instability in an Oscillating Fluid Plane

Edward W. Bolton
Department of Geology and Geophysics, Yale University,
KGL, P.O. Box 6666, New Haven, CT 06511-8130, USA

A new roll-type instability has been discovered experimentally. When fluid between two

closely spaced, parallel plates is oscillated about an axis midway between the plates, it

exhibits an instability that takes the form of longitudinal rolls aligned perpendicular to the

axis of rotation. The basic-state oscillatory shear flow, before the onset of rolls, may be

viewed as driven by the • x 9 term of the Navier-Stokes equation in the oscillatory

reference frame. Flow regimes are governed by a parameter space defined by the

maximum amplitude of angular oscillation, a, and the nondimensional frequency:

4=wd2 /v. The equilibrium wavelength of the rolls scales with d, the gap spacing between

the plates, and it increases as 0 increases. Supercritical to a weak-roll onset, an abrupt

transition to stronger roll amplitude occurs. Photographs of the cell after an impulsive start

show the roll development and initial increase in roll wavelength. A variety of phenomena

are observed, including: wavelength selection via defect creation and elimination; front

propagation; secondary wavy instabilities; and the transition to turbulence. We also present

solutions for the basic-state shear flow in a near-axis approximation, and discuss some

issues relating to its stability. The data is compared to a variety of constant Reynolds

numbers curves. We also develop a simple resonance model in which the roll turnover

time equals the oscillation period. This model shows some promise in understanding the

low a, high 0 onset of strong rolls. The roll alignment is parallel to the basic state shear

velocity, as is the case for Taylor-Couette flow, and other flows possessing potentially

destabilizing body forces. This is in contrast to roll orientation perpendicular to the flow,

as is the case for the Kelvin-Helmholtz instability.

References

Bolton, E. W. & Maurer, J., A new roll-type instability in an oscillating fluid plane,
submitted toi. Fluid Mech. (13 July 1992).



130

Rings in Numerical Models of Ocean General Circulation:
A Statistical Study

by

Eric P. Chassignet

Because of their importance in the ocean energetics and general circulation, a
proper representation of ring generation mechanisms and evolution in numerical mod-
els is crucial for an accurate picture of the heat, salt and energy budgets. Ring locus,
lifetime, propagation speed, radius and interface displacement statistics are derived
for four widely used eddy-resolving numerical models and compared to the 10-year
statistical analysis of Gulf Stream rings based on time series of satellite infrared de-
terminations performed by Brown et al. (1986). The ring formation process and
behavior in ocean numerical models depends upon the governing equations, the ver-
tical coordinate and the boundary conditions used. It is shown that as more terms
are retained in the model equations, the mid-latitude jet becomes more unstable, and
its interior penetration as well as the associated number of rings formed are reduced.
Rings in the layer model have slower propagation speeds and longer lifetimes than
their level counterparts. Such results illustrate the sensitivity of numerical ocean
circulation models to the physical and numerical assumptions made.

The Influence of Layer Outcropping on the Separation of
Western Boundary Currents.

by

Eric P. Chassignet

The influence of outcropping layers on the separation of western boundary cur-
rents is investigated in a series of purely wind-driven eddy-resolving primitive equa-
tion numerical experiments. The outcropping mechanism of Parsons (1969) allows
the mid-latitude jet to separate south of the zero wind stress curl line (ZWCL), an
important property when one considers that most realistic numerical experiments to
date exhibit an overshooting mid-latitude jet.

If the inertial terms are removed from the momentum equations, the Sverdrup
relation for the interior flow emerges as the dominant constraint on the placement of
the upper layer jet separation latitude. As long as the circulation in the lowest wind
forced layer is dynamically inactive, a good agreement is obtained with the analytical
theory, namely a separation south of the ZWCL. If dynamically active, the resulting
flow pattern then changes drastically by favoring a configuration which satisfies the
Sverdrup relation while maintaining a neutral mean state, namely a jet separation at
the ZWCL.

As soon as the inertial terms are included, the Sverdrup constraint becomes less
dominant, allowing the upper layer mid-latitude jet separation latitude to shift south-
ward whenever the upper layer is chosen sufficiently shallow to cause large-scale out-
cropping. The degree to which this southward shift depends on the amount of mass
in the top layer and on the parameterization of the wind-induced stress profile in the
water column was explored in detail.
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The Dynamics of Barotropically Dominated Eddies

William K. Dewar and Christine Gailliard
The Florida State University

Tallahassee, FL 32301

Based on observations, the proposition is forwarded that some rings involve an impor-
tant barotropic component. The work described heiein is directed at understanding the
consequences on eddy evolution of such structure. An analysis of the equations of motion
is conducted which emphasizes the importance of the evolution of the barotropic mode.
The baroclinic component is found to be largely passive.

This theory differs considerably from previous theories which focus on the evolution
of surface-intensified rings. The most important practical differences are that the coupled
system can be expected to exhibit propagation in any direction (as opposed to predomi-
nantly west, as in baroclinic theories), and that the propagation rates can be an order of
magnitude greater than those of baroclinic systems. These aspects of the present theory
are in accord with many ring observations.

A series of primitive equation numerical experiments are conducted to test the theory,
with the result that the experiments support such "barotropically dominated dynamics"
as a useful qualitative and quantitative tool for the study of eddies and rings. It is further
observed that many initial conditions which are baroclinically unstable in the presence of
a resting lower layer are stabilized in the barotropically dominated regime.

The asymptotic theory also suggests that initial conditions with closed regions of po-
tential vorticity should differ significantly from those with no closed potential vorticity
zones. This hypothesis is supported by primitive equation runs; approximately compen-
sated lower layer experiments (with no closed potential vorticity contours) exhibit qualita-
tively and quantitatively different behavior than experiments with initially energetic lower
layers (which have closed potential vorticity contours).
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Jupiter's Winds and Arnol'd's 2nd Stability TheoreiIi

Timothy E. Dowling

Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology

Stability theorems for zonal (east-west) shear flows typically involve constraints on
the potential vorticity gradient with respect to latitude, 4,,, where y is latitude and the
overbar denotes a zonal average. Consider 4. in the 1-1/2 layer shallow-water model:

where f is the Coriolis parameter, #3 is df/dy, ii(y) is the upper-layer zonal wind, u2(Y)

is the deep-layer zonal wind, which is specified in the 1-1/2 layer model, g is the reduced I
gravity, and h(y) is the upper-layer thickness. A vorticity analysis of the Voyager wind
data for Jupiter has yielded an empirical relationship between potential vorticity and zonal
wind on Jupiter (Dowling 1992): Ia = q•q)-•,(2)

where ii is measured in the rotating reference frame of the planet's magnetic field (the
System III reference frame). Since (2) specifies the basic state of the 1-1/2 layer model as
applied to Jupiter, we would like to know its stability properties.

At present, stability theorems are more completely understood in the quasi-geostrophic
limit, in which case (1) becomes:

Y- (03 -- fl + Ld 2 (i -- i 2 )), (3)

where Ld - gh/f 2 is the square of the (first baroclinic) deformation radius. The empirical
relation (2) becomes:

S= Qy L. (4).

The most widely cited stability criterion is the Rayleigh-Kuo criterion, which states that
if: Q1,, >Ž0, (5)

or
Q3, • , (6)

for all y, then the flow is stable. Since ii(y) changes sign at many latitudes on Jupiter, (4)
implies that the Rayleigh-Kuo stability criterion is strongly violated. This does not imply
that Jupiter's winds are strongly unstable, however.

There are at least two known ways that a shear flow can violate the Rayleigh-Kuo
stability criterion and still be stable. Following results originally obtained by Fjertoft in
1950 and Arnol'd in 1965-66, and later extended by several workers (see McIntyre and
Shepherd 1987), we know that if in some reference frame:

-00 < QY < 0, (7)
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for all y, tlt 1 the flow is stable. Equation (7) is alternately known as Fjortoft's theorem
or Arnol'd's 1st theorem. The techniques laid out by Arnol'd actually prove nonlinear
(large amplitude) stability instead of just linear (small amplitude) stability. Ripa (1983)
has extended (7) to the 1-layer shallow-water equations on the beta-plane or the sphere.
Unfortunately, (4) implies that Jupiter's winds also violate (7).

However, in addition to his first stability theorem, Arnol'd also proved a second sta-
bility theorem, which in our context states that if in some reference frame:

0 < Q__ < (8)

for all y, then the flow is stable. We have assumed in (8) that Ld is much smaller than
the radius of the planet; see McIntyre and Shepherd (1987) for the more general cases. By
comparing (8) to (4), we see that the zonal winds on Jupiter are apparently neutrally stable
with respect to Arnol'd's second stability theorem. Numerical experiments have confirmed
this neutrality property for Jupiter's cloud-top zonal-wind profile (Dowling 1992). The
linear stability properties of (2) and (4) are the subject of a numerical analysis by A.
Stamp in this volume. What is needed now is an extension of Arnol'd's second stability
theorem to the primitive case, and a physical explanation for the role of Arnol'd's stability
theorems in planetary shear tiows.
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Deep Jets and Shallow Spots?

Glenn R. Flierd

We begin with the anelastic model and and simplify to the case where the entropy is
uniform below and above the base of the weather layer, with a step discontinuity across
the boundary at R = a + iq(x, y, t). The dynamics then simplifies to

u, + (u V)u + 2Qk x u = -Vp
V.pu=O

[P] = -g'q at R =a
?it + U. V71 = U. Rf at R = a

f we assume small Rossby number, we can follow the standard QG derivation for the
shallow layer to find 1D- [V2?p1 +,a, y+ f q] = 0

Inte ep ae, efolw Dt Hi"~
In the deep layer, we follow Ingersoll and Pollard to derive a rather complicated set of
equations

[Dt + ( ln•)y] = sin206;Oz-PW

D a_
D 0

D = a - 2 cos 0 sin 0 + w sin 0

with V)1 - ¢2 = -g'77/f and

2 = 2 1 a2
= x-+ s i n o ay

If we assume that ¢2 is nearly depth-independent, multiply the first equation by ; and
integrate in the direction parallel to the rotation axis, use the boundary condition (the
third equation), we find the approximate statement

D [t 2 02 + #2 f- 7 = 0
Dt H2t2Yfl

with /2 a negative constant. H2 is the mass in the column, divided by the density at the
base of the weather layer times sin2 0 and is large compared to Hi.

We discussed the stability of barotropic jets (not varying along the rotation axis) in
the case where the difference between V 2 and t 2 was ignored; the upper layer can be
stabilized by Arnol'd's second theorem while the deep layer is stabilized because 1#21 is
larger than IU, I. However, the coupled model still shows a weak instability with growth
rates apparently of order (HI /H22)1/2 lUll.

If we consider spots embedded in the zonal shear flow, we can show that
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1) Isolated spots must have a deep signature such that

l2 H 2

2) Spots will be more baroclinic than the jets.
3) Spots can be compact (decaying in the exterior field) if the Froude number is suffi-

ciently large.
4) But this only applies to one mode; the other mode will generally be radiating. There-

fore spots will gradually lose energy to Rossby wave radiation. The time scales are
long [(H 2 /H1) times the characteristic turn-over time for the spot], but not negligible.
This suggests that input of energy into at least the Red Spot is required.

We can develop a weakly radiating theory: if we split the fields up into a zonal flow and a
spot/wave field

Y¢1 = - U + €1

02 = - U+ 60 2

with 6 = H, 12, we find the lowest order upper layer equation is

[a + v± + j(O1,.)J(V2 - F)O 1 + (#I - Uyy)a 1 = 0(6)at ax 9

as studied by Ingersoll and Cuong and others. The lowest order lower layer equation is
linear

[ Uav2 02 + (/2 - = a+U

This is similar to the problem of flow over topography (especially in the case where the
upper layer solution is approximately steady) and therefore will have lee waves in the
solution. The energy flux in these lee waves can be shown to cause decay of the upper
layer vortex over longer time periods.
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The limitations of balance models

Rupert Ford
Department of Applied Mathematics and Theoretical Physics

Silver Street, Cambridge, CB3 9EW, UK.

The degree to which the large scale dynamics of atmospheres and oceans can be
described in terms of Potential Vorticity distributions on isentropic or isopycnal surfaces
is of both conceptual and practical interest. Conceptually it can lead to simplification
of thought and ideas (Hoskins et al, 1985), and practically is of use in areas such as
initialization for numerical weather prediction (Baer & Tribbia, 1977).

The ability of time integrations based on inversion of the Potential Vorticity field
or Rossby modes to follow closely integrations of the primitive equations starting from
the same initial conditions prompted Leith (1980) to postulate the existance of a "slow
manifold" for the shallow water equations or truncated versions thereof. Briefly stated:

If there exist (nonlocal) time-independent operators on the Potential Vorticity field giving
the velocity and height fields such that

If at t = 0 the velocity and height fields are given by these inversion operators then they
are given by the same inversion operators for all subsequent times when the system evolves
under full (shallow water) evolution

Then this set of inversion operators defines a slow manifold for the system.

Subsequcnt investigations with severly truncated systems (Warn & Menard 1986; Vau-
tard & Legras, 1986; Lorenz 1986; Lorenz & Krishnamurty 1987) based on the shallow wa-
ter equations suggested that ultimately freely propagating gravity waves were generated,
and in the absence of forcing and dissipation no slow manifold could be found.

In single layer hemispheric simulations, McIntyre & Norton (1992) found that inte-
grations using inversion operators based on eliminating high order time derivatives of the
divergence field could follow the equivalent shallow water integrations for up to 25 days,
the only coherent difference between the two being a large scale equatorial Kelvin wave,
which appeared to be freely propagating, in the sence that its motion was consistent with
the Kelvin wave dispersion relation.

The large scale of the generated apparently unbalanced wave prompts one to recall
the problem of aerodynamic sound generation (Lighthill, 1952; Crow, 1970), in which the
scale of the generated acoustic waves is large compared with the scale of the turbulence
which is generating them.

We consider the model problem of a localized potential vorticity anomaly on an
plane at low Froude number and arbitrary Rossby number. The Froude number is taken
as an asymptotic parameter.

The leading order dynamics in the region of the PV anomaly is simply two-dimensional
non-divergent vortex dynamics. A matched asymptotic analysis shows that

(1) O(F 2 ) and O(F2 lnF) corrections to the basic vortex dynamics can be written down
in terms of the instantaneous PV distribution
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(2) at O(F 4 ) the correction to the basic vortex dynamics involves an integral over the entire
past history of the flow, which is not well defined without reference to some arbitrarily
chosen initial point in time, unless all frequencies in the vortex dynamical flow lie below
the inertial frequency f.

We conclude that it is potentially fruitful to seek high order balanced models, but
that no pr-)cedure can be entirely rational at all orders of approximation or parameter
expansion if it is to deal adequately with the parameter regime Ro -. 1, F < 1.

In the regime where the Rossby number and the Froude number are both small and of
the same order, the asymptotic analysis is not formally valid. To investigate this regime,
we consider linearized disturbances to an axisymmetric vortex, imposing the condition that
there be no potential vorticity disturbances except those associated with the motion of the
boundary of the vortex. Numerical experiments show that for mode 6 disturbances to the
vortex boundary the vortex, which has a monotonic PV gradient, and is therefore stable in
the absence of gravity waves, is unstable for Rossby numbers greater than 0.3 (if the PV is
anticyclonic) or 0.5 (if the PV is cyclonic). Since the exact axisymmetric vortex must lie
on the slow manifold, we conclude that the slow manifold is of highly reduced dimension
in phase space, consisting only of axisymmetric distributions of potential vorticity, and is
unstable, over much, and possibly all, of its domain of existence.
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C- onvection: Chaos, turbulence, and zonal flows.

J.L. Hart

Delartm ent of A.stroph, sical, Planetary and A tm ospheric Sciences
Universit\ of Colorado

Thermal convection in an equatorial annulus is studied numerically (work done with Nic

Brummel). In this zonal channel configuration gravity g is normal to the channel walls, and the

zonal direction and the basic rotation 0 are perpendicular to both g and to each other. Sloping

endwalls at the top and bottom of the channel lead to a topographic 0 - effect that acts on con-

vecting columns excited by thermal instability in the presence of an applied temperature gradi-

ent opposite to g. Such a system can be realized, for example, in a rapidly rotating cylindrical

annular centrifuge where centrifugal buoyancy is radial and naturally perpendicular to the axial

rotation vector. A similar model has been proposed by Busse (GAFD, 1983) for the generation

of zonal jets on the giant planets by thermal convection.

When the rotation is sufficiently rapid, the motion is invariant along the axis of rotation

(by Taylor- Proudman). The dynamics are governed by a barotropic quasi- geostrophic vorticity

equation with buoyancy generation, along with a heat conservation equation. The system is

constrained to be two-dimensional and is easily integrated numerically. For unit Prandtl

number the important parameters are a Rayleigh number Ra =gcATD3IKv and a differential

rotation parameter 03 =4 tan(ir)D 3/,L, where a is the thermal expansion, , the kinematic vis-

cosity, K the thermal diffusivity, D the channel wall separation, L the distance between the

endwalls, and r their cross-channel slope. The main results are as follows:

1) When Ra is increased at fixed 03 a transition to chaos by bifurcation off a two-torus in

energy space is observed. The two incommensurate oscillations correspond to an interference

vacillation involving two thermal Rossby waves with different cross-channel wavenumbers but

the same zonal wavenumber, and an amplitude vacillation where the convection generates a

mean zonal flow by a tilted-cell meanflow instability, but later becomes stabilized by the shear

when the convection gets too big.

2) When # is increased at fixed and highly supercritical Ra an abrupt transition is made

from ordinary convection with weak zonal flows to turbulent /3 - convection (see figure).

Away from the stability boundary (0 <Ra 1/4) the zonal wavenumber of the convection is

much less than the linear prediction (kx =//), and the accompanying zonal flows can be very

large.
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3) Much of* the parameter regime ot turbulent J1 - convection is occupied by pulsating

states in which bursts ot convection accelerate the zonal shear hut then are quenched when the

shear gets too big. The shear flow relaxes under viscosity until the process repeats itself.

Fioaure: Eddy streamnfunction of' convection at R.a 10' , P, - 1. a) /3 0 (ordinary

convection), b) /3 = 6000 (simple travelling wave convection), c) )3 6000 (chaotic branch with

large zonal mean flow), d) fl 8000, e) a3 = 20,000, f) a 3 28.000 (approaching stability

boundary). Each set of 4 frames shows the planform of* the convection at four successive

times. t'he longv side of each box is the zonal direction and the short side is in the direction of

gravity. The basic rotation vector is out of the plane of the figure.
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Particle-driven fluid flows

By Herbert E. Huppert

Institute of Theoretical Geophysics,

Department of AppliedMathematics and Theoretical Physics, Silver St.,
Cambridge CB3 9EW England

The motion of particle-laden fluids is of considerable interest to engineers, fluid dy-
namicists, geophysicists, metallurgists and oceanographers. The seminar presented a series
of investigations into fundamental processes in which the fluid flow is a result of a concen-
tration of small, heavy particles in the fluid. In all the cases considered the fluid motion
was turbulent at high Reynolds number, while the particles settled with respect to the
adjacent fluid motion at low Reynolds number.

1. Sedimentation of particles from a convecting fluid. Consider a fluid seeded with

particles which is heated from above. The resultant motion is controlled by the bulk
density of the particulate suspension, which is a function of both temperature and particle
concentration. The particle distribution initially stabilizes the bulk density gradient while
sedimentation proceeds, and convection occurs in an upper, clear layer and a sedimenting
lower layer. Eventually the destabilizing thermal gradient can exceed the stablizing effect
of the particles, and a sudden overturning of the whole system results. If the fluid is

cooled from above, a critical concentration separates a situation of continual overturn
from a situation of no overturn, with the sedimentary layer falling unimpeded to the
bottoiL,. This system is of relevance to the evolution of magma chambers in the Earth,
which will cool from above while crystals grow in the convecting interior. Beyond a critical

concentration the crystals will sediment and the process will be r:-initiated. A series of
sedimentary layers will thus form at the base of the chamber.

2. Polydisperse sedimentation. When a suspension of small particles is overlain by a
clear fluid whose density is greater than that of the interstitial fluid, but less than that
of the bulk suspension, the settling of the dense suspended particles can lead to vigorous

convection in the overlying layer. A sharp interface is observed between the convecting

upper layer and a staguant lower region in which there is unimpeded sedimentation. The
interface descends at a constant velocity. Buoyancy arguments based on the calculated

density profile are used to evaluate the amount of particle entrainment in the upper layer
and the descent rate of the interface. There is good agreement between the theoretical
model and experimental results.

3. Particle-laden gravity currents. When a fixed volume of a suspension is quickly
released into a less dense ambient fluid, a gravity current can propagate over the rigid
horizontal surface at the base of the ambient fluid. We have derived a model for a two-

dimensional current using the concepts of shallow water theory augmented by the deposi-
tion of particles at the base of the current. The model allows for the interstitial fluid of the

current to be less dense than the ambient though the particle concentration is sufficient to

make the initial bulk density greater. The resulting equations are solved numerically and

the results agree extremely well with data obtained from a series of laboratory experiments

using intersitital fluid whose density is either equal to or less than that of the ambient.
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There are many industrial and natural applications of the model as well as many possible
future extensions of the research.
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Can tidal dissipation account for orbital evolution of the Jovian satellites?

Petros J. Ioannou

M. I. T.

1. Introduction

It has long been recognized that dissipation of ocean tides on the Earth leads to
lengthening of the solar day and lunar month, and retreat of the lunar orbit (for a review
of the subject refer to Lambeck, 1980). The increase of the radius of the lunar orbit is
approximately 4 cm yr- 1 , and the retardation of the angular velocity of the earth around
its axis is t = -(5.5 ± 0.5) x 10-22rads-2. These secular changes have been recorded in
the sceletal growth patterns of coral, bivalve, and stromatolite fossils. Analysis of coral
and bivalve fossils shows that during the mid-Devonian (360 x 106yr bp) the year was
longer, i. e. 398 - 406days, in accordance with the orbital evolution theory. The same data
suggests that the average lunar orbital acceleration i over the last 400 x 106 yr was about
half its present value. Analysis of stromatolite fossils indicate that there were oceanic tides
2 x 109 yr bp, suggesting that the moon was already outside the Roche limit (2.9 earth's
radii).

Evolution of the lunar orbit depends on the rate of transfer of angular momentum
from the rotating planet to the orbiting satellite. This transfer is proportional to the rate
of tidal dissipation. A measure of this dissipation is given by the dissipation factor Q which
is defined as:

Q 27rE* ¢- (1.1)
AEdt'

where the line integral over -E is the energy dissipated over a complete cycle, and E*
is the peak energy stored in the system during the cycle (MacDonald, 1964). Note that
the dissipation factor Q is inversely proportional to the rate of dissipation. Presently, for
the Earth Q z 10 corresponding to dissipation of 5 x 1012 W, accounted primarily by the
dissipation of the ocean tides in shallow seas.

Estimates of Q for the outer planets were obtained by Goldreich and Soter (1966).
The existence of close satellites provides a lower bound on Q because if Q were too small
the evolution of the orbit would be too rapid for the satellites to occupy their present
close orbit if it is assumed that the satellites are as old as the solar system (4.5 x 109 yr).
The greatest lower bound on Q for Jupiter obtained by this means is supplied by Io:
Qj ,z 5 x 105. For Saturn the present location of its innermost satellite, Mimas, provides
the estimate Qs ; 6 x i0 4 and for Uranus, Miranda provides Qu ,• 7 x 10 4 . Triton's
retrograde orbit around Neptune is shrinking towards the planet and can not provide an
estimate of the Q in the manner described. However, a value of Q for Neptune of the order
of 7 x 104 is estimated to damp Triton's eccentricity to its present, nearly zero value, in
the order of 3.2 x 109 yr, even if it were captured in a highly eccentric orbit. The estimates
given for the case of Jupiter and Saturn are only approximate because the satellites of
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these planets are involved in tight Laplacian resonances. For example Io, Europa and
Ganymnede are involved in the stable resonance first studied by Laplace. The orbital
angular velocities of these satellites are such that: wio -_ 2 Weuropa, Weuropa -_ 2 wganynede,

and Wio - 3 Weuropa + 2 Wganymede = V with v - 0.74' day-'. During their evolution these
Jovian satellites distributed angular momentum transferred from Jupiter among themselves
so as to remain in resonance. Taking account of angular momentum transfer in the presence
of orbital resonances leads to a lower Q value than previously estimated. For example, if
we assume that the resonances were formed early, the estimate of QJ can be reduced by a
factor of 5 - 7.5.

Recently, another line of reasoning has been presented that can provide an estimate
of Qj without appealing to the early history of the solar system. Observations of Io
determined a radiated flux from the satellite of the order of 7 x 1013 W (Mc Ewan et al.,
1985). Peale in 1979 suggested that Goldreich and Soter's estimate of the Q could be
reduced if the assumption is made that tidal dissipation on Io is strong enough to remove
significant orbital energy from the satellite (Peale et al., 1979). If the heat output from Io
is due to tidal dissipation the satellite is expected ceteris paribus to move in a shrinking
orbit at the rate -Wio -, (3 x 10-10) wio yr- 1 (Greenberg, 1989). This tendency
is counteracted by the transfer of angular momentum from Jupiter to Io due to the tidal
dissipation in Jupiter. Consequently, determination of the rate of change of Io's orbit can
provide an estimate of the rate of tidal dissipation in Jupiter if we have data on the history
of Io's orbit. Lieske (1987) analysed a dataset of about 16000 eclipse observations of Io
since 1668, when the Paris and the Greenwich Observatories were founded. Lieske was
able to deduce that -w 0io - -7.4 x 10- 1 2 wi, yr- 1 . The implications of this observation
are shown in Fig. 1.1 for various scenarios for the evolution of the Laplacian resonance
(zn). Note that Q J, if it is to account for the observed heat flux from Io of 2.4 W m-2, has
to be -5-x 104.

A major problem facing orbital evolution theory is that we have not been able to iden-
tify with confidence an adequate source of energy dissipation despite the fact that Q is very
high. Among theoretical attempts to provide an estimate of Qj, Houben (1978) studied
the gravitational tides excited by Io in Jupiter assuming a rigorously neutral interior. He
found only - 1.5 x 1010 W of wave energy radiated from the planet which corresponds to
Qj = 2.7 x 109. The only physical mechanism that could give the observed or even lower
dissipation has been suggested by Stevenson (1983). According to which the tidal oscilla-
tions lead to condensation of helium and the hysteresis of the helium droplet oscillations
lead to tidal dissipation in the manner of acoustic waves attenuation in fog. This process
depends on the distribution of helium in the planet, the density of nucleation sites, and
the size of the helium droplets. Although Stevenson's model is highly speculative, it is
remarkable that it can account for Q as low as 102.

To account for the astronomically suggested Q we extend the classical theory of tides
to planetary bodies. We will investigate the tidal response in the planetary atmospheres
of the Jovian planets as a function of the static stability in the interior of the planet. The
analysis presented is a summary of Ioannou and Lindzen (1992a; 1992b) which will be
referred to as ILl, IL2.
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2. Gravitational tides in a fluid planet.

The planet will be modelled as an inviscid adiabatic fluid rotating with constant
angular velocity WJ. We will derive the equations of motion that govern the small adiabatic
oscillations about a motionless and spherically symmetric mean state in a frame of reference
rotating with the planet. The motion is assumed to be caused by the gravitational tidal
potential of a satellite revolving around the planet. Let w, v, u denote the radial (r), zonal
(0), and mnridional (0, the colatitude) component of velocity in spherical coordinates. Let
the subscript "o" refer to an equilibrium value of any quantity and let a symbol without
a subscript represent the perturbed part of that quantity.

The equation of continuity, linearized about a motionless and spherically symmetric
basic state in hydrostatic balance, is:

89P+ d P+Po 0(2.1)+ + PoX =O ,

where p is the density, and X the divergence:

X=1 ( 1 a 1 a.
r2  (rw) + rsin 0 + rsinV (usin0). (2.2)

The linearized thermodynamic equation for adiabatic motion about the hydrostatic mean
state is:

pp = c2- po-oN2W, (2.3)

where p is the pressure, go the acceleration of gravity due to the mean distribution of mass,
and c the speed of sound:

C2 = rP . (2.4)
Po

The Brunt-Viiisalii frequency N, is given by:

N2=-go (lnpo+ )- (2.5)

The compressibility at constant entropy, Fi = dln reduces, foran ideal gas, to -y, the

ratio of specific heat at constant pressure to that at constant volume. In the interior of the
planet and in stellar interiors r1 is a variable quantity. However, its variation is relatively
small and we assume P1 to be constant. Also, note that thermally driven turbulent eddy
exchanges have been ignored in (2.3).

Combining (2.1) and (2.3) we obtain:

"aP = Po (goW - cx) (2.6)
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The gravitational potential consists of an equilibrium part, 4o, and a perturbed part,
,t. They satisfy, separately, the Poisson equations:

V 2$o = 47rGp, ,V2 4D = 47rGp, (2.7)

with G the universal constant of gravitation.
We ignore the effect of perturbation density on the gravitational potential. This

approximation, due to Cowling (1941), is accurate for motions of higher order meridional
and azimuthal structure for which the gravitational potential due to the perturbation
density at one part of the fluid cancels that from other parts (Unno et al., 1979). Cowling
(1941) provided some justification for ignoring 4), even when the motion is of low meridional
and azimuthal order. With the Cowling approximation, the perturbation potential, 4), is
externally determined and equal to the tidal potential, Q2r , which is related to its surface
value, Q, by:

Q2= () a eift+iso (2.8)

in which a is the frequency of the gravitational forcing, and, s, the zonal wavenumber.
The gravitational forcing of Jupiter by Io is primarily semidiurnal with s = 2. For the
values of the frequency, and the tidal potential at the surface of the jovian planets refer to
ILL.

The inviscid momentum equations, neglecting the nonradial component of the rotation
vector in the coriolis force (the traditional approximation, Eckart 1960), become:

49 1 1
-u - 2wcos~v-__P, (2.9)

a 1 a
av+2wcosOu- rsinoaP, (2.10)
& r i 0 7 1

PO W=- Po' 2r r-9 0 p, (2.11)

in which P = P/p + flr is the reduced pressure. The traditional approximation is accurate
for large scale motions in stable thin spherical shells (Phillips 1966). The traditional
approximation can be extended deeper into the planet because only the outer layers of
the planet are important dynamically. The above approximations: the traditional, the
Cowling, and the inviscid, result in major simplification. The equations become separable
under these approximations in a manner similar to that in the classical theory of tides
(Chapman and Lindzen 1970). The major point of departure from the classical theory
is retention of the nonhydrostatic terms in the radial momentum equation (2.11) which
become important in the planetary interior when the Brunt-Viisiilii frequency is small.

Assume that the tidal response has reached a periodic state under the forcing of the
revolving satellite. The dependence of the perturbed quantities on time and azimuthal
angle will be the same as that of the forcing which has the form ei'at+I'O. We will continue
to denote the perturbed quantities with the same symbol as previously, it being understood
that the quantities refer to the (a, s) mode.
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Eliminating the horizontal velocities and substituting into the divergence, X, we ob-
tain:

r, 4W2r- (2.12)

where X is the Laplace tidal operator, which determines the meridional structure of the
tidal fields and which depends only on f = a/2w. For the gravitational forcing of Jupiter
by Io this quantity is f = 0.766 ( refer to ILl). Expanding the various fields in terms of
Hough functions, 0,(0), we obtain, i.e. for the tidal potential:

2 00

Ur = - 1Qnon(6) eS't+'ih0• (2.13)

The divergence (2.12) becomes:
ia2

1a(r2w) + Pn (2.14)X -- r2 Or gahn r2 '

where the subscript, n, denotes the order of the Hough mode, gs, the gravitational accel-
eration at the surface of the planet, and hn the equivalent height of the Hough mode. The
values of the equivalent heights for Jupiter due to the gravitational tidal forcing of Io are
derived in ILl.

Eliminating the density from (2.11) and (2.3) we obtain:

Ap,, _ N2p, + N' r2
_, n go _ N2 (2.15)

where the radial displacement, n = wn/ia. Eliminating the divergence, Xn, from (2.6)
and (2.14) gives:

1 d s (1 1 a 2  g Q _ r2
rd(r 2 G) + - - ;g-hn" P - I.-Cn = c a• (2.16)

We transform (2.15) and (2.16) into canonical form by defining:

gr2 G exp (-I dr ,o = Pa_2 expQ r N d , (2.17)•n~ ~ ~ P -- = nep• •d Po go

In terms of the new variables (2.15), (2.16) become:

rrd " h )r) 2- fS c 2• ar 2 •r 2 n ( f r •
S= 1(r 2 - n + exp ( j dr) (2.18)

d1 2 2r rN
=( N2nexp -- J g dr, (2.19)-drp" =r~i-(r) ( -N)"-asg
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where

With the aid of W.K.B. approximation we can classify the possible oscillatory motions
of (2.18), (2.19) (refer to IL2). We note that the presence of N in the interior creates ducts
for large positive equivalent heights, where propagating inertio-gravity waves can resonate.
Remarkably, IL2 find that the resonant configurations can be predicted accurately by
W.K.B. methods.

To proceed we must specify the thermodynamic state of the planet. To be specific we
will consider the tides excited on Jupiter by Io. Jupiter is taken to be a mixture of hydrogen
and helium with a constant abundance of 80% H 2 by mass. The planet's thermodynamic
state is taken to be different in the interior of the planet than in the atmospheric envelope.
The atmosphere is assumed to be an ideal gas with -y = 1.4. We assume that the gas in
the interior of the planet obeys the polytropic constitutive relation Po = Kp", with K a
constant to be determined by the mass of the planet, M, and the requirement that the
density vanish at the planet's surface (r = a).

Early theoretical studies of the interior constitution of the Jovian planets together
with gravimetric inversions indicated that the distribution of mass is hydrostatic and to a
good approximation consistent with the polytropic constitutive relation with n Z 2. On
the other hand, work on the high-pressure thermodynamics of hydrogen - helium mixtures
indicated that the adiabatic compressibility parameter r 1 increases with pressure from the
ideal gas value of z 1.4 at the atmospheric envelope to ; 3 for pressures of the order of 1
Mbar, and over a substantial range of pressures is z 2, leading to the conclusion that the
polytropic equation of state po = K/p2 is a convenient and an appropriate simplification of
the constitutive relation in the interior of the planet. The polytropic relation with n = 2
has the advantage that the distribution of density is given in closed form:

po(r) = poc&o('1) = Poc sinrq) (2.20)

where 71 = r/a, ,3o is the normalized density, and the density at the center of the planet
is Poc = irM/4a3 . The polytropic constant KI is determined to be IC = 2Ga 2 /r. Hav-
ing determined the mean density, we obtain the mean mean pressure which is shown in
Fig. 2.1. The pressure in Fig. 2.1 is expressed in terms of the number of scaleheights
x = - ln(p/pcloud), where Peloud is taken to be the pressure at the top of the visible clouds
of the planet (• 300mbar). Remarkably, there are about 18 scale heights from the visible
atmospheric envelope to the center of the planet, while there are only 4 scale heights from
0.9a to the center of the planet. The magnitude of the tidal response at the atmospheric
envelope depends on the number of scale heights spanning the distance between the atmo-
spheric envelope and the levels of excitation which are concentrated in the interior of the
planet. As a consequence the tidal response will depend primarily on the outermost layers

of the planet where we can safely make the Eckart approximation.
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Although, the interior is taken to obey the polytropic relation with n = 2, following
Cowling (1941) we also allow for IF, > 2, which leads to stable stratification in the interior.
The Brunt-Viiisi1i frequency is given by:

N2 g_,,r, - 21 {d 2 r, -2 g221
1Nd~ '- 2 g0  (2.21)

a 11 A. (\dr, - i Aoagq

When r1 = 2 the interior is neutral i.e. N = 0. When Li > 2 the interior is stably
stratified.

The distribution of N in the interior of Jupiter is unknown. The observed internal heat
source has led to the widely accepted view that the interior is in an average state of neutral
stability. However, the processes that maintain the mean static stability are complex and
poorly understood. In general, it can be argued that if heat from the interior is supplied to
the surface by thin convective plumes the interior must maintain an average positive static
stability if the compressional heating in the downwelling regions is to be balanced by loss
of heat due to conduction or radiation (Lindzen, 1977). Stable stratification can be also
maintained if there is a large meridional circulation in the interior of the planet. Veronis,
in the course of this summer's meeting, conducted preliminary numerical experiments
in order to determine the mean state maintained by convection in a 2D non-rotating
Boussinesq fluid heated uniformly from below and cooled at the top according to the heat
flux law: k-T = A(Te - T), where k is the thermometric diffusivity, A a Newtonian cooling
coefficient, Te = AT sin(7rx/2L) an imposed externally boundary temperature distribution.
He found that the resulting time averaged circulation brings the fluid to a nearly isothermal
state, which except from the presence of unstably stratified boundary layers at the top and
bottom, the fluid is mildly stably stratified in the interior (refer to Veronis's abstract in
this volume).

We find that the inclusion of even small positive static stability in the interior of the
planet has a dramatic effect on the tidal response at the atmospheric envelope. Note that
low levels of static stability, although dynamically significant, may be difficult to detect
by direct measurement of N.

The idealized distribution of N in the interior of the planet (2.21) is shown in Fig.
2.2 for 1i = 2.085. Note the rapid decrease of N caused by the rapid increase of density
with radius and the eventual vanishing of the gravitation acceleration at the center of
the planet; for r/a < 0.75 we have N < a. At the atmospheric envelope N is of the
order of 2 x 10-2 sec 1  which is ; 65a at the 100 mbar level (cf. Achterberg and
Ingersoll, 1989) and well satisfies the condition N > a which is necessary for oscillations
to behave as vertically propagating waves. Note that at the outer parts of the planet,
below the atmospheric envelope, N < 10a, a value of static stability which may be hard
to distinguish observationally from neutrality. To estimate the possible range of values
of the compressibility parameter F1 , let us first assume that the idealized distribution of
N, (2.21), is valid up to the visible region of the atmospheric envelope of Jupiter. In this
case, the ri that matches the observed lapse rate of about 2 K km-1 at the atmosphere
is 2.56. Assuming that the static stability rapidly decreases under the clouds then a range
of values 2.01 < r, < 2.15, is consistent with continuous transition from the atmosphere
to the polytropic interior.
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I To calculate solutions of (2.18), (2.19) we need to specify the boundary conditions. We
will assume a solid boundary at some radius in the interior of the planet for which N < ao.
The specific location of the inner boundary condition was found to be unimportant (refer
to IL2). For an outer boundary condition we will assume either decay of energy density
or the radiation condition.

For the presentation of the atmospheric response it is informative to define the equi-
librium radial displacement of a material surface under the influence of the external tidal
potential, Qr: Gequilib = -Qr/go. For the case of a neutral interior the radial displacement
and the equilibrium displacement are shown at the equator as a function of the radius of
the planet in Fig. 2.3. The corresponding displacement for the case of a stably stratified
interior is shown indicatively in Fig. 2.4. The effectiveness of the forcing in exciting tides
in the planetary atmosphere is proportional to the difference between the two displace-
ments, because the tidal fields are forced by this geopotential disequilibrium. For example,
if the inner planet were separated by a solid interface from the atmosphere, atmospheric
tides would result from the response to the forcing of 13m geopotential disequilibrium
at the ground (for the Earth the corresponding value is 20cm, which corresponds to a
hydrostatic tidal pressure fluctuation of 20pbar, the observed lunar tidal pressure fluc-
tuation is approximately 60pbar). Instead the neutral interior reduces the geopotential
forcing to 30 - 100cm. This is to be expected because, with the absence of gravitational
restoring force, the weak compressional and inertial restoring forces can not oppose the im-
posed geopotential deformation. Remarkably, a planet with neutral interior has tiny tidal
response, while introduction of small stability in the interior leads to greatly enhanced
dynamic displacements: ý - ýequtiib ;i, 20m. Previous calculations (Houben, 1978) treated
a neutral interior, and consequently produced small tidal forcing in the atmosphere and a
resulting tidal dissipation factor Q - 109 , which is 3-4 orders of magnitudes larger than the
values derived from astronomical theory. If we are to account for the astronomically de-
rived tidal Q, it appears to be necessary to assume that the planetary interior has nonzero
stability.

Consider now the case of a planetary interior with some static stability. The strength
of the tidal fields in the atmosphere is estimated by the resulting radiation energy flux:
pw-. This energy flux represents the power radiated from the planet and can provide an

estimate for the associated tidal dissipation factor Q through use of (1.1). The peak
energy of the tidal fields is calculated as the maximum potential energy of the tide in
the planetary interior. Note that the resulting magnitude of Q, although indicative, is
certainly an overestimate because neither the dissipation of the trapped modes nor other
forms of dissipation have been taken into account. The dependence of the energy flux
and the associated Q are plotted in Fig. 2.5 as a function of F1  The resonant peaks
indicate the selective resonance of different Hough modes. As remarked in ILl and IL2,
the tidal forcing, which is proportional to the second spherical harmonic, projects on many
Hough modes each of which can separately resonate in the ducts allowed to form in the

interior of the planet by the presence of stable stratification. The resonant peaks can be
suppressed by introduction of sufficiently large dissipation in the interior. Dissipation can
be simulated by allowing the forcing frequency a to assume complex values. For an interior
dissipation of 60 hours, the case shown in Fig. 2.5, the resonances are diffuse.
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Disregarding the resonant peaks, the tidal response asymptotes to an energy flux level
of zt 101 It' over the whole surface of Jupiter which corresponds to • .005 I'Vin 2 . The
associated Q asymptotes to ,z 105 in accord with the value expected from astronomical
arguments. Note that if the dissipation in the interior is small, so that the resonances are
sharp, the energy flux can reach the order of 1017 - 1018 W. These large energy fluxes
result in values of Q of the order of 103 . That such a situation is plausible is indicatcd
by the anomalous heat output of Io (Yoder and Peale 1981). In the case of reduced
interior dissipation the tidal fields in the atmosphere may show a discernible episodic
signature caused by the time variations of the interior stability. It is then plausible that
tidally forced wave fields reach an energy comparable to the thermal emission of Jupiter
(14 Win-2 which is t 1017 W).

3. Conclusions

We have extended the clas3ical theory of tides to study the tidal response of a deep
fluid planetary body. We have retained the separation of the meridional and vertical
structure equations by neglecting the horizontal components of the rotation vector in the
calculation of the coriolis acceleration. We expect this approximation to give accurate
results and even prove useful in determining the free modes of a rapidly rotating planet.

The tidal response is found to depend crucially on the distribution of static stability
in the interior. The presence of convection in the planetary interior has often been as-
sumed to lead to a state of neutral stability. While absolute neutrality in the interior is
a good first approximation to determine the mean thermodynamic state, small departures
from neutrality have important implications for the tidal response. The tidal response of
the atmospheric envelope is proportional to the departure of the tidal fields from their
equilibrium value. In the absence of stability in the interior a neutrally buoyant material
surface deforms and becomes nearly an equilibrium equipotential surface leading to small
tidal excitation.

We have shown that the presence of small static stability at the outer parts of the
planet leads to dramatic enhancement of tidal response in the atmosphere. The tidal
fields are then capable of radiating enough energy away from the planet to result in a
tidal dissipation factor Q consistent with the bounds set by astronomical considerations.
The presence of static stability in the planetary interior creates ducts in which the various
Hough modes can resonate. If the viscous dissipation is not very large in the planetary inte-
rior we expect that this resonant behavior to result episodically in very large tidal activity
as the interior stability is modulated by convection. If we disregard the resonant peaks.
the tidal activity asymptotes to a value which is independent of the amount of stabilit"
and is consistent with the tidal dissipation required by the astronomical arguments.

We have utilized a very simple model for the static stability in which the most stable
layers are concentrated in the outer parts of the planet, but are separated by a nine scale
height deep neutrally buoyant region below the clouds. We expect our conclusions to apply
also to more structured models of interior static stability, as long as the static stability
is not concentrated too deep in the interior. Remarkably, the assumption of a rigorously
neutral interior is dynamically singular and, encouraged by agreement with astronomically
determined tidal dissipation, we are led to the hypothesis that the interior of the planet

1
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should possess some static stability. Verification of this hypothesis must await sufficiently
accurate observations of the tidal response of Jupiter.

We have already found that that the tidally forced wave fields may radiate an energy
comparable to the thermal emission of Jupiter (.. 1017 IV). This energy flux may be
a source of momentum that can maintain the puzzling observed cloud level mean zonal
circulation of the planet. Using the Eliassen-Palm theorem (Lindzen 1990) we can estimate
the expected latitudinally averaged acceleration of the mean flow to be 10-2 yIs-iday-i
assuning that the momentum of the waves is deposited in a layer of one scale height
(25Kmi) depth. However the interaction of vertically propagating and vertically trapped
modes can lead to a a latitudinal redistribution of zonal angular momentum on the scale
of the dominant vertically propagating Hough mode. These alternating local accelerations
will be concentrated in restricted latitude bands and will extend as far as the critical
latitude of the planet (for Jupiter the critical latitude associated with forcing by lo is
500 N), resembling the visible banding of the planet.
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FIGURE LEGENDS

Fig. 1.1 Relationship between tidal dissipation rates in lo and in Jupiter, lo's orbital
acceleration 6.i, and the rate of evolution of the Laplacian resonance V'. Observational
determination of the thermal radiation from lo (McEwen et al, 1985) is shown. The shaded
area is the .io' which consistent with the data analysis of Lieske (1987). If the resonance
is in equilibrium (Yoder and Peale, 1981) , the system is constrained to the diagonal line
i, = 0. Most theoretical models of Jupiter's interior suggest that dissipation is slow that
i, < 0, except for Stevenson's (1983) speculative model. Lieske's (1987) determination of
v shows that the system lies on the i' = 0 line, which requires Qj : 10i. (adapted from
Greenberg, 1989).

Fig. 2.1 The mean pressure of Jupiter as a function of the fractional radius of the
planet. It is calculated for the polytropic interior: p_ = ACp 2. The pressure is plotted in
terms of the log-pressure coordinate, x, which indicates the number of scale heights. At
the center of the planet the pressure is around 34 Mbar, at the cloud tops is 0.3 bar. Note
that there are around 18 scale heights from the visible clouds to the center of the planet,
out of which the 15 are between the clouds and 0.9 of the radius of the planet.

Fig. 2.2 The Brunt-V~iisiil~i frequency , N, in the interior of Jupiter, as a function
of the fractional radius of the planet. The interior mean state satisfies the polytropic
constitutive relation with n = 2 and r 1 = 2.05. The dashed line shows the frequency
of the external periodic forcing, a. For comparison, note that at the visible cloud level
N ;: 65a.

Fig 2.3 The magnitude of the radial displacement as a function of the fractional
radius. Curve 1 is the radial displacement calculated from the dynamic response in Jupiter,
the interior is exactly neutral, and the core has been placed at 0.1 of the planetary radius.
Curve 2 is the radial displacement of the equilibrium tide.

Fig. 2.4 The magnitude of the difference between the dynamic radial displacement
and the equilibrium radial displacement at the equator as a function of the fractional radius
of the planet Jupiter. The tidal response of the atmospheric envelope is proportional to
the disequilibrium of the dynamic response. Curve 1 represents the response of an interior
with some stability (r 1 = 2.05), curve 2 represents the case of an exactly neutral interior.

Fig. 2.5 Total Energy flux pff bar in Watts, integrated over the surface of the planet
at the visible atmosphere, as a function of li. Only the Hough modes (n > 12) which
propagate in the upper atmosphere contribute to the energy flux. The lower curve shows
the corresponding Q. The dotted curves show the corresponding results with an effective
dissipation in the plaretary interior of 60 hours.
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Stability of Rotating Shear Flows in Shallow Water

Joseph B. Keller and Charles Knessl

Asymptotic methods are used to determine the dispersion equation for disturbances
of rotating parallel flows in shallow water. From this equation the unstable modes and
their growth rates are determined. The solution involves seven asymptotic expansions
which are matched together. The results supplement and extend those which have been
obtained previously using numerical methods by Griffiths, Killworth and Stern (1982) and
by Hayashi and Young (1987).

Griffiths, R.W., P.D. Killworth, M.E. Stern (1982) A geostrophic instability of ocean
currents. J. Fluid Mech., 117, 343-377.

Hayashi, Y.-Y. and W.R. Young (1987) Stable and unstable shear modes or rotating
parallel flows in shallow water. J. Fluid Mech., 184, 477-504.

C. Knessl awid J.B. Keller (1992) Stability of rotating shear flows in shallow water. J.
Fluid h.Ith., 244, 605-614.

ENERGY SOURCES FOR
PLANETARY DYNAMOS

W. V. R. Malkus

In the belief t-iat only unkind gods would arrange two energy sources
for planetary dynamos as equally important, this re-exploration of plausible
sources seeks to eliminate rotational energy in favor of convection. Recent
experiments and theory of the "elliptical" instabilities in a rotating fluid i
due to precessional and tidal strains provide quantitative results for veloc-
ity fields and energy production. The adequacy of these flows to produce a
dynamo on both terrestrial and giant planets is assessed in the context of"strong field" scaling. With little ambiguity it is concluded that Mercury,
Venus, and Mars can not have a dynamo of tidal or precessional origin.
The case for today's Earth is marginal. Here precessional strains (acci-
dentally comparable to tidal strains) also are potential sources of inertial
instabilities. The ancient Earth with its closer Moon, as well as all the gi-
ant planets, have tides well in excess of those needed to critically maintain
dynamos. Hence the project proposed here proves to be successful only in
part - an Earth in the distant future will not be able to sustain the geody-
namo with its rotational energy. On the other hand, convec, 'emains a
possible dynamo energy source, with such a large number o, .ermined
processes and parameters that it is unfairly easy to establish cvdLitions forits inadequacy. A large literature explores its adequacy. A brief review of
this literature, in both a "strong-field" and "weak-field" context, advances
several cautionary restraints to be employed on that day when the limits of
validity oi a quantitative dynamo-convection theory are to be determined.
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I

Voit.x Dyllaliics in Zonce Belt. Flows

I S. MAarcus and R. D. Van Buskirk

University of California at Berkeley

I Department of Mechanical Engineering

I )October 27, 1992

We exalmilne the d.vIdlIlics of vortices sul)erposvd oi zone- belt (unii--directional) flows with

shears that chalge.s signl as a function of location. Regions of the zone-belt flow where

tit(, shear is the same, sign as a test vortex are defined to be prograde with respect to that

vortex: otherwise. they are adverse. Steady vortices are surrounded by closed streamlines,

b1ut there is a last one )evol(,ld which the strealdines extend to infinity. Bifurcation diagrams

of families of steadv vortices show that ;- -arca tion parameter increases, the ratio of

tit(, vortex area to the area enclosed by thc h tclosed streamline goes to unity. There is a.

limiting vortex bevotlt which there are no solutions (Van Buskirk 1991). Limiting solutions

are (1 I; inuts amd ntot turfing poilnts iln the jbifu'rcation diagrams. Boundaries of limiting

vortices lie ill reions of adverse zolte belt flow and contain one or inore stagnation points.

\ortices with finite and infinite L, behave differently. Those with infinite L,. have stable

limit poilits while those with finite L,. have mistable limit points, and the onset of linear

stability is clearly shown as a turning point ill the bifurcation diagram before the limit point

is rieached. ( Xan Buskirk &-- Marc'us 19911. 19931)

I ~Usin-, a spectral ( litoiur methrhod (Van Buskirk & Marcus 1993c') to solve the Euler and

1
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(ph1ai *ivo't rt plic clu;I ituios- ( with di(issipadtioni iiiclidedl by 1)v ieiioviig conitourl far fromt thleI

celiter of, voritcjtv) we 611ij 1Vt tiiiC l(1)ld(I-Lt flows and plIot their I)aths through enlergy

circuila tionu (k E ') p1)1as spa1)ice. usiiallY t here is lit) (lissipa tioii, it t~lpicallY haplpens. onlYI

wheniit vo rtex 1)1uiindai- run11s inlto at Sta gnatiolli point. Theni. a thin tail fornms \\hich'I is swepti

away. The slope of' the paithi inl ( t F' phlase space (determnines the( ratio of dlissip~atedl (irdil-

latioii to eliergy. and at late times is proplortionial to the stream function at thc stagnation

p)oint. Vortices with circulations initially larger than the, limiting vortex shed circulation

andi are attracted to at poinlt ill (E n F'hpac, near the imiiiting solution wlhen L, is infinite

and nevar the( turnling point whent L,. is finiite. Vortices wvith smialler initial circulations are

attracted to tihe line inl n ' space corresponding to the famnily of linearly stable, steady

vortices wvith the samue strength vorticity ats the initial vortex. Pairs of initially nearby

votics iie(rge1 anld eittrain irrotationta. fluid. though flows, with small L, compare o h

Mjaeroot of' the area-, of' the initial vortices entrain very little. The mnerged vortices are

at ttracted to the( smaial area inl (F-,) spaice' consisting of the locus of all steady. stable

fiamilies wvith vortjcitv less than the value of the initial vortex p~air.I

R 01)115t vortices a lways have-( t heir centers of vorticity within the lprogra~de part of the

zonle lbelt flow. but large vortices with finite L,- are different froml those with infinite L,. inl

two imp~hortant ways: With inifinite L, vortices grow inl size until they overflow their owv I
b)elt or Zonec into the( -mirrolinthiii zonec or belt (xwith adlverse shear). The maximal vortices

have stagnlationl po(inrt- on their b)oundlaries. With finite L,. two things canl happen that

call prevenlt vortices folnoiii rachingt their stagnation points. The first is that the vortex call

overflow intro the regionl of adverse shlear anld grow ill size. b)ut it b)ecomnes linearly unstableI

if. it reaches its turiing, pon (it on the bifiir-ca tion dhiagram ) before it reaches its stagnation

hIiiiiit ) point . A seconid thing, that (-an happen is that the vortex c-an grow inl size (ill allI
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(lir('ctiolts) until 0(,t p)art of its Jn))ll(1dair mIoves in latitude into a region of its own belt

or Zone, where the shcar is still l)rograde )lit where it is much stronger than it is at the

vortex ce(nter. Then a;s the vortex grows, its area increases, ])ut the boundary of the vortex

no longer changes latitude only the longitudinal extent of the vortex increases. Thus the

latitudinal extent of the vortex asymptotes to a finite value. We have computed numerically

the value critical value of the shear where the boundary asymptotes as a function of L,.

For infinite L,. the critical shear is infinite.

We argue that these flows 1llodel the Jovian atmosphere and the long-lived Jovian

vortices, su(ch as the Great Red Spot (GIRS) of Jupiter and White Ovals. In particular we

argue that the GIRS shows both finite L,. effects. On its northern side it overflows into a

region of adverse shear until it reaches a point of linear instability. Thus the northernmost

part of the GRS is located just south of the flow's stagnation point. The southern part of

the GIRS has grown ill size until it lies in a. region of large prograde shear. The strength of

the shear at the southernmost part of the GRS is approximately the critical value; regions

farther south of this location have even greater value of shear.

References

Van Buskirk, IR. D. 1991 Quasigeostrophic vortices in zonal shear. Ph.D. thesis Harvard

University.

Van Buskirk. 1?. D. & Nlarciis, P. S. 1993a Vortex dynaimics in flows with non-uniform
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Uniform vortices in stratified flows.

Steve Meacham
Florida State University

A variety of known results for simple vortices in 2-D Euler flow have simple analogues
in stratified quasigeostrophic flow (see Table 1.) The main reason for this analogy is the
similarity between the vorticity/streamfunction relations for the two types of flow.

2-D Euler Stratified QG

Circular patch of Spherical blob of

uniform vorticity uniform potential vorticity

Elliptical vortex Ellipsoidal vortex

V-State V-State

Elliptical vortex in Ellipsoidal vortex in
uniform strain & shear uniform strain & shear

Table 1. Simple 2-D Euler vortex flows and their 3-D analogues.

1 Potential vorticity/Streamfunction relation

In 2-D Euler flow, described by a streamfunction 0(m, y), the vertical component of vorticity

C is related to 0 by an isotropic elliptic operator, the two-dimensional Laplacian,

C=V•b (1)

and satisfies the conservation relation

lot + J(¢, C)-=0. (2)

Quasigeostrophic flow in a continuously stratified fluid with uniform buoyancy frequency,
N 2 _ O £p is pseudo-two-dimensional. The horizontal velocity is again given by a stream-

p 8z
function

UH= k A Vr, 0 = O(,y Z)

A potential vorticity (pv),

q =k.V A UH + 19ý -f 4,O
N 2 z

f2_ .2 02'0• + V2-8.
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is conserved by the horizontal motion and satisfies

Otq + J(',q) = 0 (3)

Rescaling the vertical coordinate by a uniform stretching factor N/f, transforms the operator
in the pv/streamfunction relation to an isotropic elliptic operator:

q = V20 (4)

In two-dimensions when C is constant, 4 = a quadratic + a harmonic function, while, when
q is constant, we also have 0 = a quadratic + a harmonic function. If C (q) is uniform in
a singly connected area (volume) D bounded by a curve (surface) S(Z, t) = 0 and uniform
but different outside this, then (2) or (3) imply that

Ots + J(IkS) = 0 (5)

If S and 4' are both quadratic in a, then OtS and J(4', S) are both quadratic in x. Thus if
one can show that 4' = V-2XD is quadratic on and next to S whenever S is quadratic, then
one can infer that S will remain quadratic. A more detailed analysis shows that this is indeed
the case when the flow domain is unbounded; eq. (5) then provides equations for the way in
which the coefficients in the quadratic form S evolve in time. This result is a restatement of
the central principle underlying the results of Kirchhoff (Lamb, 1932), Kida (1981), Zhmur
and Pankratov (1989), Zhmur and Shchepetkin (1991), Meacham (1989, 1992), Meacham
et al. (1992). This result suggests that blobs of uniform ( and q bounded by a quadraticI surface S may yield steadily rotating, isolated equilibria and time-dependent solutions for
vortices embedded in a quadratic external 4 field.

I Let us briefly review some of the known two-dimensional results for vortex patches in Euler
flows on an unbounded plane.

A. The simplest is perhaps the result that a circular patch of uniform vorticity and unit

radius, embedded in a background of zero vorticity in which there is no imposed external flow
at infinity, forms an azimuthally symmetric equilibrium. It possesses a countably infinite set
of normal modes in which the perturbed boundary lies at r = 1 + 77(0, t) where 77 oc e"'(0-ft).

We can speak of these as having azimuthal symmetry m. The superposition of the circle

and a single azimuthal mode is then a steadily rotating configuration of azimuthal symmetry
m that departs infinitesimally from the circular state. We can introduce a measure of the
departure from circular equilibrium by defining the length of the maximum radius of the

distorted figure to be 1 + p, p > 0. The normal modes represent a family of bifurcations from
the spherical symmetry with bifurcation parameter p. As p increases beyond infinitesimal

values, we obtain finite amplitude disturbances.



166

as the nonlinear continuation of the m = 2 mode. Kirchhoff showed that m = 2 equilibria
existed for the entire range 0 < p < co and found their rotation rates, Q(p).

C. Using numerical techniques, Deem and Zabusky (1978) showed that the m > 2 modes
can also be continued to finite amplitude and called the resulting equilibria V-states. They
conjectured, and Wu et al. (1984) later showed more clearly, that these solutions can only
exist for a finite range of p, 0 < p < pc(m). In the limit as p -- p,, the V-states develop
"points", discontinuities in boundary slope at their corners. It is believed that multiply-

connected equilibria exist beyond this limit. Associated with the V-states are rotation rates,

D. Kida (1981) noted that even in the presence of a background flow described by
a quadratic streamfunction, an initially elliptical uniform vortex will remain elliptical. A
typical background streamfunction can be written

1 2 1r~b-(we)x + -(we)y 2

4 4

In general, the aspect ratio (ratio of minor and major axes), \, and orientation, 0, (figure
1d) of the ellipse will be time-dependent. These two variables are all that is required to
describe the evolution of the vortex and they satisfy the following non-canonical, Hamiltonian
equations

A= -eA sin 2¢

1 1 1+±\ 2

+ lw + 2e 1 --A2-• OS 2I

where

fQK =(1 + A)2

is the rotation rate for a free Kirchhoff vortex. Scaling time by w-1 , setting r = w-1,
p = e/w, these equations become

A• -pA sin 2¢i
1 1 1 +,A 2  

(6) 1
rn= {K(A\) ± -. + -P1 -A 2 O co2(k

Since the system has only a two-dimensional phase space, the different possible behaviors
of this system can be described by classifying the different possible phase portraits (see

Meacham, Flierl and Send, 1989). The system depends on only two parameters (r, p). This I
parameter space can be divided into a small number of regions that have distinct types
of phase portraits. These portraits contain three types of trajectory which we shall call

tumbling, nutating and shearing. These are indicated in fig. 2. The first two types are I
periodic, while the third is not, representing instead a continual stretching of the vortex. I

I
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(a) (b)

(c)

..."- .... .. .. ... ...... , .... '".. .
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S . I "

-- ..... (d)

t t I --

S~(e)

Figure 1. Examples of 2D equilibria, a) circular vortex patch, b) Kirchhoff ellipse, c)
V-states, d) Kida vortex, e) dipole.
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nutating1 ___
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tumbling

0L
0 , " 2*pi

0 oCr Mntation
shearing

Figure 2. Sketch of the types of trajectory available to the Kida vortex

E. A lust and distinct type of two-dimensional piecewise uniform vortex equilibrium is
a steadily propagating dipole solution (fig. le), that can be obtained numerically and has
been described by Pierrehumbert (1980).

2 Three dimensional quasigeostrophic uniform potential vorticity equilibria.

Turning now to quasigeostrophic vortices in 3D, we consider a continuously and uniformly
stratified, resting fluid of infinite extent. This is disturbed by a blob of unit uniform anoma-
lous potential vorticity of volume 17r, with its centroid at the origin. We denote this blob by
D. The basic equilibrium that we will consider is that of a spherical blob D of unit radius
(in the vertically stretched coordinate system.) This is a steady equilibrium that possesses
a set of steadily rotating normal modes with structure

(q1,7e,?) = (r', r-(n±1), (Dl - 1 )_1)e'm(O_"ltL(m)(6)

where .0i and 0, are the perturbation streamfunction within and outside the sphere, while
77 is the normal displacement of the surface of the sphere, L(n") is an associated Legendre
function and 0 < u, 0 < m < n. The rotation rate SJ of the modes with non-trivial
azimuthal structure is given by Q = {1/3 - 1/(2n + 1)}.

Each of these normal modes represents the beginning of a separate family of rotating equi- i
libria that bifurcates directly from the spherical solution. Each family is characterised by a
different azimuthal and vertical structure. In particular, for each n there is a collection of
n modes that have different azimuthal structures but a common rotation rate Q, and one
stationary mode (m = 0). The stationary, m = 0 modes are azimuthally symmetric. The
set of associated rotating equilibria is very extensive; we will discuss only a few here.
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3 Ellipsoidal vortices

In a fashion similar to the Kirchhoff ellipse, an ellipsoidal blob of uniform potential vorticity
anomaly (fig. 3) is an exact solution of the quasigeostrophic equations of motion. If one axis
is aligned with the vertical, the vortex rotates steadily about this axis at a rate

Q 3(a,3 1 ac43j0 (S 2 +±S){I(Ci + S)(#, +±S)(1l ±S)}13 ,2 ds~2 = f 2+,

This is a solution with m = 2 symmetry and is the natural extension of the (n, m) = (2, 2)
modes.

The linear stability of these solutions can be examined in a way similar to that used by Love
in his analysis of the Kirchhoff ellipse (Meacham, 1992).

ZA

Figure 3. Sketch of ellipsoidal vortex

4 Three-dimensional V-states

As in the two-dimensional case, we can find steadily rotating equilibria with higher azimuthal
symmetry (m = 3,4,5, ... ) numerically. These 3D V-states form families of solutions. Under
certain constraints (which include that the area of the mid-depth cross-section = 7r), a subset
of the possible V-states are picked out. These can be viewed as forming a separate one param-
eter family for each choice of m. They are continuations of the (n, m) = (3,3), (4, 4), (5,5)
etc. There are other types of solution with similar azimuthal symmetries but different vertical
structures. For a given azimuthal symmetry, an appropriate parameter to choose is a bifur-
cation parameter similar to that used in the two-dimensional case. Here we define 1 + p to be
the length of the maximum radius of the mid-depth section. The three-dimensional V-states
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require an additional parameter, a vertical aspect ratio ju to complete their specification (see

sketch, fig. 4).
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Figure 6. Sketch of growth rates of complex eigenmodes on rotating equilibria, a)
ellipsoid, b) three-fold symmetric, c) four-fold symmetric.

For reasons analogous to those in the 2D Kida problem, an ellipsoidal vortex in a background
flow with a quadratic streamfunction will remain ellipsoidal. For this problem, a general
quadratic quasigeostrophic streamfunction can be written

I W(x 2 + Y 2 ) ± e{(x 2 _ y2 )cos 2f + 2xysin2,E} + rzf xsin X - ycos X}
4 4

(Linear and constant terms do not affect the dynamics and can be removed by simple trans-
formations.) This type of streamfunction embodies three distinct features: a background
rotation at a rate w/2, a horizontal strain at a rate e with an orientation about the vertical
axis of E, and a vertical shear at a rate r with orientation X.

The geometry and orientation of the ellipsoid is specified by two aspect ratios, {a(t), /3(t)}
and three Euler angles, {fO(t), O(t), ik(t)}. The former are the lengths of the "horizontal"
principle axes divided by the length of the third axis; the latter describe the transformation
between a fixed coordinate frame, Oxyz, and a coordinate frame instantaneously aligned
with the principle axes of the ellipsoid, OX3y 3 z3.
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The evolution of the ellipsoid is described by the equations

- = -e { cos 0 sin 2¢ cos 2(¢ - e) + [cos27k - sin 2 0(1 + cos 2 4)] sin2(0 - f)}
a 2

+ -rsin 0 {sin2¢0sin(¢ - X) - cos0(1 + cos2 4') cos(€- X)

1

e- 2 {cos 0 sin 21 cos 2(0 - c) + [cos 27k + sin 20(1 + sin 2 V')] sin2(o€- c)

- rsin 0 1 sin27ksin(¢ - X) + cos0(1 + sin2 4') cos(4'- X)
f 1 1 1

(II= + 12) + (II - S12)cos2¢' + 1•-
2 2 2

1e a2 +lsin2¢+2 +1cos2¢o cos 2(o-e)-2 1- -- I - 2-1I

+ a21 1 - 1 cos 0 sin 2¢ sin 2(0 - E)

± 0{ Cos (a2 - 1 os n'().-iX)

1 1 1 cos 20 sin 2V cos(q - X)2 a;2 "1 1 __1

9 sin~sin2k(!Q2 -01)
2

1-esinO a + 1 cos 2 ,o+ sin 2 ,o cos 0 sin2(o - E)
2 a2 - 1 '32 -1

+ (21 12 1) sin2V cos 2(o - e)}

{ [sin2• cos 20 Cos 2 V,- + COS(O - x)

+(221 P2-L l)cos0sin2Vsin(O- X)

4= cos9 -1 (nl + n2) - •(fl f12)cos21f}

Cos (a 2 + sin2 40+ P + - cos2.o + a ±2 os 27k cos 2(0 - E)
+2eos ;;2l 21 Ca2 - 2

+ [(2-1 _- 1 1o2 ±-3 (1 + cos 2 9) sin240 sin2( -e)
+ K ý2 '32-12 ; 2 --2

S {Cos(2o +Cos 2 7k) sin 2 _a 2 Cos 2s 2 sin 2 7k sin(O - X)sinO (~2 a2 - 1 + #2 - I1 a 2 -6

- - ) cos cos20 +1 + 2 s 0 Osin in 20 cos(-X)
;21 2 12;;- /32 siii~i



174

Here, fn3 is defined as before while

S= n 3(,3 - a 3 -1 ) l = (/3a- , a )

An alternative, Hamiltonian formulation of this system can alse be given. While the equa-
tions above look fairly complicated, one can obtain a lot of information about the trajectories

of the system.

We first note that there are three global invariants: volume, particle height (the z coordinate
of a material fluid element) and excess energy. Volume conservation is implicit in our deriva-

tion. The remaining two invariants represent constraints on solutions of the above equations.
The system, as represented above, has a five-dimensional phase space {a, f3, 0, 7k, 0}. Phase
trajectories are confined to three-dimensional manifolds embedded within this and deter-
mined by the initial conditions. As we vary the initial conditions these manifolds fill out the
five-dimensional space.

We can find a variety of simple time-dependent and steady equilibria that depend on the
parameters that control the background flow.

5.1 Horizontal strain and rotation (r = 0)

When background vertical shear is absent and one axis of the vortex, say Oz 3 , is initially
vertical, it will remain so. The evolution of the vortex can then be described by only two
independent variables and has a character that is very similar to that of the two-dimensional
Kida problem. We can choose as our free variables, the horizontal aspect ratio, A = a/0,
and the angle around the vertical axis, 0. Setting r = w- 1 and p = ew-1, we obtain

A= -pA sin 20

1 1 1+A 2  (7)
r1= rA 3 (I;p) + ± + •p 1-- A2 cos20

The vertical aspect ratio, p is conserved by the motion and so behaves as a constant param-
eter.

(7) is identical to the system for Kida's 2D problem, (6), except that fIK(A) has been replaced
by fQ3(,\; p). To a good approximation,

f1(\/)= g(pL)fIK()

where g(t) is a monotonically decreasing function of A with g(oo) 1 and g(0) = 0. Eq (7)

becomes
A = -p,\ sin 24

1 1 1+A•2

4= r'fK(A) + + pl -- 2 cos 20

where r' = rg(p) < r for 0 <I p < oo. Thus in the case (7- = 0,6 = 0), the motion of a 3D
ellipsoid is similar to that of a 2D ellipse with reduced vorticity r'. Extrapolating from the
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Kida problem, we see that when IpI < 1, ellipsoids will not be sheared out. When IJP > 1,
some ellipsoids will be sheared out, depending on their initial shape and orientation. The
fraction of the (A, 4) phase space corresponding to initial conditions that will end up being
sheared out increases as Ir/pI is reduced. When JpJ > 1, an ellipsoid is more likely to be
stretched out than the 2D ellipse of similar vorticity and initial aspect ratio, since r' < r. An
important consequence of this is that tall vortices are less likely to shear out than shallower
vortices since ju, and therefore g(j-t), are larger for the taller vortices. Vertical shear has the
opposite effect, tending to stretch out tall vortices more readily than short vortices. In the
case of vortices drifting through a flow that contained both regions of horizontal strain and
regions of vertical shear, one might expect to find a preference for vortices with P -- 0(1).

The types of fixed points (steady ellipsoids) and periodic solutions (periodically oscillating
ellipsoids) possible are just as in the Kida 2D case. The 3D problem also manifests a type
of behavior that is not present in the Kida problem. When e is small and V1 /2 < I < \- 1/2 ,
the Kida-like solutions are unstable to disturbances that tilt the 0z 3 axis away from the
vertical.

5.2 Vertical shear (w = e = 0,,r $ 0)

Going on to consider unidirectional flow that is parallel to the x-axis and contains a uniform
vertical shear, one can show that there exist steady equilibria with 0 = -ir/2, 4 = 7r/2, 0 $ 0.
These correspond to ellipsoids rotated through 0 in the plane transverse to the flow. With
this anszatz, the ellipsoidal variables satisfy,

4 Cos 0(f13 - 02) + cos2 + 32 sin 2 0}

T Cos 0

sin0 a 2 
- 1

For steady equilibria, we must have 4 = 0 & 4 =0 which together imply

(a 2 - 1)112 = 7rcot 0, (1 - a 2 /13 2 )3 = rtan0

Given 0 and r, these determine a and f. The two relations can be combined to yield

2 2 - 1='3
(a2 2 !)/2-a)Q2 (a 3)f 3 (a, 1) =_fla, 0)

F(a,13) has two maxima of equal height with Fm..x • 0.08. This, at once, tells us that

steady equilibria are not possible for r > Fm./. _ 0.28. For values of r that are less than this
maximum shear rat-, steady equilibria are possible for a range of 0: 0 > 0 > -Oo(r). 0o - 0

as r - FI"IQx and is shown in figure 7.
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Figure 7. Width of range where equilibria are possible, 00, as a function of shear
rate -r.

For each 0 within the allowed range, there are two possible equilibria. Both have A < 1 and so
are elongated in the transverse direction. For moderate values of 0 and r, one solution has A
near 1 while the other has a A near zero. It is straightforward to analyse the stability of these
steady states to small perturbations in {a, 3, 0,4', & 4'} (perturbations which preserve the
ellipsoidal character of the vortex). Solving the dispersion relation so obtained, we discover
that the solutions along the branch that corresponds to the more elongated equilibria are
unstable. Numerical integration of trajectories close to examples of these equilibria confirm
this. In general, trajectories starting near the equilibria on the stable branch of solutions
are quasiperiodic (figure 8).

5.3 Horizontal strain and vertical shear, (w : O,e 5 O,r # 0)

When both horizontal strain and vertical shear are included, things become a little more
complicated. Steady equilibria are possible when w, e, and r are not too large. These again
have 0 = -7r/2, 4' = 7r/2, 9 $ 0. For each value of 9, the values of a, 3 corresponding to
equilibria are determined by

1

(a2 - 1)((,)+ w- e) + e = 7-ecot0
2 2

21 1
a /'3 2 )(n 3 (ai3) + 1w - -e) + e = rtan0

2 2

Now there are three parameters and the behavior of the solution surfaces in parameter space
is a bit too complicated to describe here. Instead an example is shown in figure 9.

IiI
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Figure 8. Quasiperiodic trajectory near a neutral equilibrium.
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Figure 9. Loci of steady equilibria for the case: r =0.1, e =0.1.

6 Remarks

There are some strong parallels between the behavior of 3D, quasigeostrophic, uniform blobs
of potential vorticity and 2D patches of uniform potential vorticity. In the examples noted
above there is a core of similarity while the addition of the third dimension enriches the
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variety of possible solutions. When more than one vortex is considered, however, the three-
dimensional case diverges from the two-dimensional case thanks to the inclusion of a pro-
cess absent in two dimensions, the transfer of angular momentum vertically. Interactions
between two-dimensional vortices are constrained by the two-dimensional conservation of
angular momentum. This has a strong effect on the merger of pairs of identical vortex
patches, necessitating horizontal transfers of angular momentum between the vortex cores
and filamentary arms generated in the merger process. In the analagous three-dimensional
problem for identicr' vortices at the same depth, vortex merger involves angular momentum
transfers in the vertical that allow the middle levels of the vortices to come together while
the upper and lower levels of the two vortices are pushed apart. One consequence of this
is that vortices that are initially far apart can ultimately merge, a result rather different to
that in the two-dimensional problem.
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I Hamiltonian contour dynamics*

I P.J. Morrison

I Department of Physics and Institute for Fusion Studies

i The University of Texas at Austin, Austin, TX 78712

Abstract

I The noncanonical Hamiltonian structure of the two-dimensional Euler equations for fluid

flow and the quasigeostrophic equations for rotating fluid flow is derived from the Hamil-

tonian description of Kirchoff vortex dynamics. The resulting Hamiltonian structure is

referred to as noncanonical because the Poisson bracket does not have the standard canon-

ical form. Contour dynamics is reviewed and its reduced Hamiltonian structure is obtained

from that of Euler's equations. This formalism is used to develop further approximations,

in terms of finite degree-of-freedom Hamiltonian systems, based on amplitude expansions.

Several applications are discussed. A single contour barotropic vortex is treated in detail.

Low mode truncations are seen to compare very well with contour dynamics simulations.

Similarly, a two contour barotropic simulation is considered and compared to contour dy-

namics simulation. Negative energy modes are defined and their association with nonlinear

instability and subcritical bifurcations is described. Also, baroclinic and barotropic waves

on a barotropic vortex are treated.

* This is a progress report of work done in collaboration with George Bell and Glenn

Flierl, work which began at the GFD summer school of 1990 (cf. Fellow Project Report

therein of GB).
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Wave and Vortex Dynamics on the Surface of a Sphere

Lorenzo M. Polvani
Department of Applied Physics

Columbia University, New York, NY 10027, USA

Motivated by the observed potential vorticity structure of the stratospheric polar
vortex, we study the dynamics of linear and nonlinear waves on a zonal vorticity
interface in a two-dimensional barotropic flow on the surface of a sphere [1]. After
reviewing the linear problem, we determine, with the help of an iterative scheme, the
shapes of steadily propagating nonlinear waves; a stability analysis reveals that they
are (nonlinearly) stable up to very large amplitudes. We also consider multi-vortex
equilibria on a sphere: we extend the results of Thompson (1883) and show that a
(latitudinal) ring of point vortices is more unstable on the sphere than in the plane;
notably, no more than three point vortices on the equator can be stable. We also
determine the shapes of finite-area multi-vortex equilibria.

We discuss two specific applications to geophysical flows: for conditions similar
t(, "hose of the wintertime terrestrial stratosphere, we show that perturbations to a
polar vortex with azimuthal wavenumber 3 are close to being stationary, and hence
are likely to be resonant with the tropospheric wave forcing. Secondly, we show that
the linear dispersion relation for waves on a vorticity interface yields a good fit to the
phase velocity of the waves observed on Saturn's "ribbon".

We also derive the conditions for the stability of strips or filaments of vorticity
on the surface of a sphere [2]. We find that the spherical results are surprisingly
different from the planar ones, owing to the nature of the spherical geometry. Strips
of vorticity on the surface of a sphere show a greater tendency to roll-up into vor-
tices than do strips on a planar surface. The implication for planetary atmospheres
is that barotropic flows on the sphere have a more pronounced tendency to produce
small, long- lived vortices, especially in equatorial and mid-latitude regions, than was
previously anticipated from the theoretical results for planar flows. Essentially, the
curvature of the sphere's surface weakens the interaction between different parts of
the flow, enabling these parts to behave in relative isolation.

[1] L.M. Polvani and D.G. DritE•hel, "Wave and vortex dynamics on the surface of
the sphere", submitted to J. Fluid Mech. (1992)

[21 D.G. Dritschel and L.M. Polvani, "The roll-up of vorticity strips on the surface of
a sphere", J. Fluid Mech., 234, 47-69 (1992)

1l
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What is potential vorticity?

by Rick Salmon
Scripps Institution of Oceanography

In this pedagogical lecture, we show that potential vorticity is just ordinary vorticity
measured in comoving coordinates, that is, in coordinates whose coordina'e-surfaces move
with the flow. We then address the deeper question: Why does potential vorticity have
such a special status in geophysical fluid dynamics?

Our starting point is the perfect-fluid equations,

D + 2Q x v -1Vp - VO(x)
Dt P

p= p(p,S)
Dp -- f- p~v=0

DS
" =0 (1)

where 0 is the potential for external forces, S is the entropy, and the other symbols have
their usual meanings. From (1) we obtain the vorticity equation

Dw___ 1
D -[w. V]v =Vp x V-
Dt p (2)

where

w- - and o=-Vxv+2 (3)

is the absolute vorticity. If the entropy S is uniform, the pressure depends only on
density, p=p(p) , and (2) reduces to

Dw -[w- V]v=0
Dt (4)

which is equivalent to

(5)

where
[L,w]' v id' _ vidy

dXJ dx' (6)
is the Lie derivative of w with respect to v. In (6), superscripts denote components, and
the summation convention applies.

To explain the physical meaning of the Lie derivative, we note that (4) is analogous to
the equation for the displacement 8 r(t) between two infinitesimally separated fluid
particles at r(t) and r(t) +8 r(t), viz.,

d &i odv'j0d&t -dx? &= 0.
t~x~ (7)
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Noting that didt is equivalent to DIDt (in this context), we see that (7) is the same as (4)
with w replaced by 6 r. This means that, in homentropic flow, the vector w is transported,
tilted and stretched by the fluid in precisely the same way as the infinitesimal displacement
vector between two fluid particles with the same initial location and orientation as the w-
vector being considered. In fluid mechanics, this analogy is often described by the
statement that "the field of w is frozen into thefluid "; but the more mathematical statement
that " w is Lie-dragged by the flow" seenis more appropriate.

To obtain an equation for the potential vorticity in homentropic flow, we introduce a
conserved scalar,

DO =0
DT (8)

and derive the equation

+ves -+a -=0v-a- + v -x-7 + a.-x7= 0(9
(9)

for its gradient
dO

ta, = "&'i.(10)

The scalar 0 need not have any physical significance; it could be an arbitrarily defined
tracer. But (5,6) and (9) combine immediately to give

r .Q + Q DQ 0
"a & Dt- (I1)

where
Q = awi= (X W (12)

is the potential vorticity. The potential vorticity equation (11) is simpler than its
constituents (5) and (9) because tilting and stretching affect the vectors w and VO in
compensating ways. In mathematical physics, this relationship is emphasized by writing
(9) in the form

[. + L,]c=0 (13)

where the Lie derivative
[L,(x. =- v --- 7-+ ai (4

[LcI dx ~dx' (14)
of the covariant vector a=-VO is defined differently from the Lie derivative (6) of the
contravariant vector w. Their product is the scalar Q , whose Lie derivative is

L,Q = vj
dx~ (15)

and (11) then follows from (5) and (13) by the Leibniz rule for Lie derivatives. The
equations (7) and (8-10) illustrate the general concepts of Lie-dragging of vectors and
covectors, respectively, and, in that sense, fluid mechanics illuminates geometry. But the
converse is also true: from the standpoint of tensor analysis, the statement (4) that the
vector w is Lie-dragged by v, has been converted to the (simpler) statement (11) that the
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scalar Q is Lie-dragged, by the standard trick of introducing a Lie-dragged covector Ct, the
gradient of a conserved scalar being the simplest possible choice.

Has anything really been gained? Without the concept of potential vorticity
conservation, the vorticity equation (4) for homentropic flow offers a way to step the three
components of vorticity forward in time. At every time, the Biot-Savart law is needed to
compute the velocity v from w. With the concept of potential vorticity, the three
components of (4) are replaced by the six conservation equations:

DO DO2  DO3
Dt t Dt (16)

and DQ- 0, -Q 0, =Q 0
Dt Dt Dt (17)

where
Q =w VO,I Q2 =w" V02, Q3=w. V03  (18)

To use these equations, we step the 0 's and Q 's, determine the three components of w
from the definitions (18). and then use the Biot-Savart law as before. (Three independent
0 's are required to determine the three components of w.) The equations (16) and (17)
seem simpler than (4), but this is at least partly an illusion; it is amusing to speculate than
the human tendency to prefer (16,17) over (4) is rooted in our natural tendency, acquired
early in infancy, to classify our environment into immutable objects that can be moved from
place to place but not otherwise changed. It is likely that intelligent fish, who would
appreciate the analogy between w and a stretchy piece of seaweed, would prefer the more
condensed description offered by (4).

The formulation (16-18) of homentropic fluid dynamics invites the following
interpretation of the three required potential vorticities: the three Q 's are simply the three
components of w in comoving coordinates with curvilnear basis vectors VO1, %70, V03 .
Let A-(At. A2 , Aj ) be the components of the velocity in this same comoving frame. That
is, let

v = AIVOI + AVO,. + A IV (19)
It can then easily be shown that the conserved potential vorticities take the form

wI d(o,. 02. 0,)Q. = O J o=Ta• .: V. A I
P (20)

w hcre

4, --j,' -• Td1 (21)

is the gradient operator in comoving coordinates. If the conserved 0 's are initially
assigned so that

dO, dOJ dO, = d (mnas) (22)

(a comparatively weak restnction). then (20) reduces to

A (23)
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and the whole vorticity dynamics becomes

DD [Vex A] =0 (24)

Since DIDt is simply the local time derivative in comoving coordinates, (24) implies that
the vorticity

Ve x A = F(0,,02, t3) (25)

is simply a static field in the comoving reference frame. A translation of (25) into
conventional notation leads to what has been called "Cauchy's solution of the vorticity
equation."

In general non-homentropic flow, the torque term on the right-hand side of (2) destroys
two of the three components of the conservation law (24). In that case, it may be
convenient to take the entropy S as one of the comoving coordinates. Since the torque in
(2) has no component in the direction of VS, we find that the S -component of (24)
survives:

D
D4--[(V, x A). VS ]0 (26)

The conserved quantity in (26) turns out to be the familiar Ertel potential vorticity. And,
although (26) contains only one-third of the dynamical information in (24), it is - in
strongly stratified flow - a much more useful equation. In unstratified (VS=O ) flow, the
0 -surfaces become very convoluted, and the simplicity of (24) is offset by the complexity
of transforming back into physical coordinates. However, in strongly stratified flow,
gravitational restoring forces resist the folding of isentropic surfaces, rendering the single
equation (26) much more useful. Moreover, if the fluid is rotating (f2- 0), the single
equation (26) corresponds to the slow part of the fluid motion, which is often of primary
interest; we come back to this point below.

Hamilton's principle for a perfect fluid offers a much more direct and motivated
derivation of the potential vorticity laws (24) and (26) (Salmon, 1988). The conservation
law (24) corresponds to the symmetry property that the Hamiltonian for homentropic flow
is unaffected by particle relabelings that do not affect the mass density. When entropy
gradients are present, this symmetry is partly broken, and two components of (24) are
"lost." In rotating flow, these two "lost" components of potential vorticity give rise to
high-frequency inertia-gravity waves. This leads to what I call the "two-plus-one" view of
geophysical fluid dynamics, a concept I will illustrate by the following description - and
criticism - of the quasigeostrophic approximation.

Consider the primitive equations of motion, that is, the equations obtained by applying
the Boussinesq, traditional, and hydrostatic approximations to (1). Choose a particular
state of rest, and linearize the primitive equations about this rest state. Let R, G +, and G-
be the amplitudes of the Rossby and gravity modes in a particular wavenumber k. The
plus and minus correspond to gravity waves propagating in the directions ±k. Now
rewrite the fully nonlinear primitive equations in the modal variables R and G:
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dR-- t- io. ={R,R }+{R.G}+{G.G }

dG÷+d++ ico JG {G )G+{GR I+{RR}
dG

dri-- = {G.G}+{GR}+{R.R} (27)
where the brackets denote nonlinear terms, quadratic in the enclosed variables. Equation
(27a) turns out to be the evolution equation for the linearized potential vorticity - the
surviving component of the potential vorticity in non-homentropic flow. The gravity wave
equations (27b) and (27c) correspond to the broken symmetries in the two non-entropy
directions. As first recognized by Leith (1980), the conventional quasigeostrophic
equations are equivalent to

-- , + ico,={ R,R}

G=0I G- = 0
G=0 (28)

Thus, the surviving symmetry becomes the whole dynamics, and the broken symmetries
are replaced by balance conditions that filter out the unwanted high-frequency waves;
equations (28b) and (28c) correspond to geostrophic balance in the two horizontal
directions.

In their "two-plus-one" composition, with potential vorticity conservation being the"one" and the "two" balance conditions permitting the three-dimensional velocity to be
calculated from the single component of potential vorticity, the quasigeostrophic equations
(28) resemble other, more sophisticated, approximations to nearly geostrophic flow. But
the quasigeostrophic equations are flawed in a way that makes them particularly unsuitable
for large-scale oceanography. The result (28) depends on the particular choice of rest state,
and the logic behind (28) disappears if the solution wanders far from this rest state. In the
usual notation, the choice of rest state is reflected by the prescribed mean Vaisala frequency
N2(z), and the quasigeostrophic approximation breaks down if deep isopycnals outcrop at
the sea surface.

From the geometrical viewpoint, the approximation (28) to (27) corresponds to an
ordinary projection of the initial conditions and the dynamics onto the R- axis in phase
space. This amounts to the introduction of a metric for which R and G are the Cartesian
coordinates. But phase space has no natural metric, and the imposition of a metric
corresponding to an arbitary rest state is responsible for the flaws in the quasigeostrophic
approximation noted above. Phase space does have a natural geometric structure,
associated with a symplectic tensor or antisymmetric metric that does not correspond to a
rest state, but comes from the underlying exact dynamics. When this symplectic tensor is
used in place of the arbitrary metric, the equations corresponding to (28) are the
semigeostrophic equations, which have none of the problems noted above. The best
motivated development uses Dirac's theory of constrained Hamiltonian systems (Salmon,
1988a.)

References
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On the Maintenance of the Westerlies

Theodore G. Shepherd

Department of Physics, University of Toronto, Toronto M5S IA7 Canada

Observations suggest that the dominant forcing for the super-rotation (mean wester-

lies) in the Earth's atmosphere comes from meridional angular-momentum transport by
eddies. It is natural to ask how one might understand, predict, or parameterize this trans-
port. One possible approach is an appeal to mixing-length theory and eddy viscosity. But
while this gives a rough estimate for the meridional eddy heat transport, it is hopeless for
the momentum transport since the latter is up-gradient.

Another classical approach is an examination of the eddy fluxes associated with
normal-mode baroclinic instability. Again, while this seems to give reasonable answers
for heat transport, it fails miserably for the momentum transport which is observed to be
maximal at much higher altitudes than expected from instability theory. Moreover, and
more importantly, nonlinear numerical simulations of baroclinic instability under realistic
conditions (Simmons & Hoskins 1978) demonstrate that the momentum transport occurs
at a later stage in the life cycle of a baroclinic wave than the heat transport, when the
wave has lost its normal-mode structure and is decaying barotropically.

In his classical monograph, Lorenz (1967) summarized the situation thus: "We regard
the problem of explaining the pattern of the transport of angular momentum by the eddies
as the most important problem in general-circulation theory among those for which we
now lack a fairly adequate explanation". While the problem is far from being completely
understood, there has been considerable progress over the last 15 years or so. It is the goal

of this paper to review the salient points of this development.

The problem of eddy angular-momentum transport is ultimately one of wave, mean-

flow interaction, for which we now have a comprehensive theoretical framework in the
small-amplitude quasi-geostrophic limit (Andrews & McIntyre 1976):

a02 1 a p. a aaU a 2  a2g ~ j
+82  p 8 8z S 0z/t (V (. F) = a

The differential operator applied to the zonal-wind tendency Oh/Ot is elliptic and hence

invertible; thus the above expression demonstrates how a combination of transient and

non-conservative effects on the eddies can drive mean-flow changes. The second equality
follows from the pseudomomentum (wave-activity) conservation relation

--:- + -. -

-A +=V&t
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In the above,
-p , ( q,'P a lo

2 __ and F = -Paiu V Y- -S V2 -ivi•~

are respectively the "Eliassen-Palm" (E-P) wave activity and its flux, q is the quasi-
geostrophic potential vorticity, and D represents non-conservative effects on the eddies
(also, in this context, ageostrophic and nonlinear effects). The notation is standard: see,
for example, Andrews et al. (1987).

A more physical interpretation of the above control comes from the fact that

V V. V = v'q' = meridional flux of potential vorticity.

This leads to an explicit demonstration of the potential-vorticity invertibility principle:
there can be no mean-flow changes without mean potential-vorticity changes.

! In baroclinic life cycles, j - dt= 0 so

ps az S z at -Y -OY;

thus irreversible mean-flow changes are controlled by non-conservative effects on eddies,

and reflected in non-zero V • F = v'q'. The evidence from baroclinic life-cycle calcula-
tions (Edmon et al. 1980; Hoskins 1983; Held & Hoskins 1985) reveals that these non-

I conservative effects occur primarily at the surface (associated with occlusion and fronto-
genesis) and on the flanks of the jet stream near the tropopause (associated with Rossby
wave breaking and an enstrophy cascade to small scales).

These non-conservative effects are sometimes referred to as irreversible mixing (of
potential vorticity). This is becauseI

I
where ri is the meridional particle displacement (Rhines 1977). Hence non-zero V. F can
be associated with irreversible growth in particle displacements. In the case of baroclinic

life cycles this has been verified by Held & Hoskins (1985).
Idealized numerical experiments (Feldstein & Held 1989) show that the existence of a

single life cycle involving irreversible potential-vorticity mixing depends on the existence of
a critical layer. Without a critical layer, one finds baroclinic (normal-mode) vacillation and
repeated life cycles: hence reversible decay. With a critical layer, on the other hand, one
finds baroclinic (normal-mode) growth followed by barotropic (non-modal) decay, and a

single life cycle: hence irreversible decay. The reason for tl]: is that critical layers generate'I
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small length scales and lead to mixing, whence irreversibility. More generally, though, one

just needs wave breaking: namely the wrapping-up of potential-vorticity contours. (The

point is that critical layers induce wave breaking.)

The implication of the above theory is that the problem of transient-eddy parameter-

ization is essentially one of Roiaby wave drag parameterization. In this view, developed

over the past decade or so principally by McIntyre, Hoskins, and Held, the maintenance

of the westerlies is associated with radiation of negative (westward) pseudomomentum out

of the jet core region. Focusing on the Reynolds stress alone is a red herring, and leads to

such non-sensical notions as "negative viscosity".

Inleed, within the framework of wave, mnean-flow interaction theory, the westelrly

forcing of the mid-latitude jet is seen to come from V " F at the ground, and is associated

with cyclone growth, occlusion and frontogenesis: this is, perhaps, a somewhat radical
notion!

The above considerations suggest that the problem of eddy flux closure may be fo-

cused on the determination of the location and strength of the low-level and the upper-

level potential-vorticity mixing. In the case of the low-level mixing, the location might

be determined from linear baroclinic instability theory and the strength from nonlinear

baroclinic-saturation theory (Shepherd 1989). In the case of the upper-level mixing, the lo-

cation might be determined from linear ray-tracing theory and the strength from nonlinear

saturation together with wave-activity conservation.

Now, linear theoxry predicts complete absorption of the E-P flux at a diffusive critical

layer (Dickinson 1969); this would provide a logical basis for parameterization (Held &

Hoskins 1985). This approach was shown to be viable for sufficiently small-amplitude

eddies by Held & Phillips (1987), using numerical "barotropic decay" experiments. For

atmospheric parameter values, however, nonlinear effects would appear to be crucial.

The possible connection between critical layers and wave-activity absorption was also

addressed in an observational study by Randel k Held (1991). They found that while the

basic notions of wave-activity propagation and barotropic decay where the intrinsic phase

speed (c - ii) is small seem qualitatively correct, linear critical-layer absorption is not a

good basis for eddy-flux closure.

On the other hand, critical-layer absorption is merely an idealized model, valid in a.

certain parameter limit, of the more general and robust phenomenon of nonlinear wave

breaking and enstrophy cascades. This is the province of large-scale turbulence theory.

Quantitative examination of irreversible mixing (of potential vorticity) is provided by the

spectral transfer or cascade of (potential) enstrophy to small scales. In particular, there

is a component of this transfer involving the down-scale transfer of transient enstrophy

induced by the time-mean flow, which is associated with an up-scale transfer of energy

from the transients to the mean: hence the observed "negative viscosity". This is precisely



189

the process described earlier within the context of wave, mean-flow interaction theory.

Preliminary investigations along these lines have been made by Shepherd (1987a,b), but

more work is required to bridge the gap between large-scale turbulence theory and wave,

mean-flow interaction theory.
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Experimental studies of flows in a rotating annulus:
Barotropic instabilities and Hamiltonian transport

T. H. Solomon, M.S. Pervez and H.L. Swinney
Center for Nonlinear Dynamics,

University of Texas at Austin, Austin, TX 78712
and

D. del Castillo Negrete and P.J. Morrison
Institute for Fusion Studies,

University of Texas at Austin, Austin, TX 78712

Experiments are performed on azimuthal flows in a rotating annulus with barotropic
(source-sink) forcing and a beta effect. These flows are of significant interest because of
their close relationship with planetary flows (such as the Gulf Stream and the Antarctic
Circumpolar Jet) and plasma flows (such as drift waves). Fundamentally, the rapid rotation
results in a velocity field that is almost perfectly two-dimensional, as is expected by the
Taylor-Proudman theorem. Because of this two- dimensionality, precise comparisons can be
made between theoretical and numerical predictions of the dynamics and the experimental
results. In addition, the tools of Hamiltonian mechanics can be applied to studies of
transport and mixing in these flows. In particular, concepts of Lagrangian chaos (chaotic
advection) and Kolmogorov-Arnold-Moser (KAM) invariant surfaces can be exploited to
analyze trapping in and hopping between "islands" (or vortices) in the flow.

Studies of the dynamics concentrate primarily on the low Reynolds number (R)
regimes. For small R, the flow is an axisymmetric jet bounded by strong shear layers.
With increasing R, each of these shear layers independentally becomes unstable to the for-
mation of vortex chains. The resulting state consists of two concentric chains of vortices,
each with its own mode number and propagation speed. Near onset, the vortex chains have
many properties typical of shear-induced instabilities. They are nevertheless influenced by
the beta effect, which results in an asymmetry between co-rotating and counter-rotating
flows. Most significant is the decrease in the propagation speed of co-rotating vortex chains
for small Rossby number e. Increasing R above onset, the vortex chains grow, resulting
in a decrease in e and in the propagation .-peed (for co-rotating flows). For large enough
forcing, the vortex chains lock, having the same mode number and propagation speed.
For co-rotating flows, the locked states have the properties of Rossby waves; specifically,
the propagation speed of the states agrees with that predicted by a dispersion relation
for Rossby waves. For counter-rotating flows, however, the locked states still retain the
basic properties of a shear-induced instability. Experiments are currently under progress
to study the behavior of Rossby waves at intermediate values of R, and, in particular, the
bifurcations to a chaotic state.

Studies of the kinematics examine the transport and mixing properties of the flows.
Hainiltonian models that describe the velocity field predict that transport can be chaotic
if the velocity field has two or more modes. The phase space, which is real space for two-
dimensional flows, is divided into ordered and chaotic regions, separated by KAM invariant
surfaces that act as barriers to transport. These structures are seen experimentally if dye
is injected into the annulus. The dye does not cross the KAM surfaces, leaving holes in
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the concentration field. Particle- tracking techniques are being developed to quantify the
transport and mixing in the system. Neutrally-buoyant particles suspended in the fluid are
tracked with a rotating video camera and a computer with an image acquisition system.
Trapping of particles in vortices is observed. In addition, particles in the chaotic regions
"stick" temporarily in the vicinity of the vortices. Measurements are being made of the
distribution of sticking times.
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Chaos and Intermittency in the Solar Cycle

E.A. Spiegel, Columbia University

1. The Data. We look at the solar cycle coarsely and we see an aperiodic oscillation
that may well be chaotic and that shows signs of intermittency. In modeling these data,
we need to decide how much coarsening is desirable. The solar data are probably not
extensive enough in time to decide such issues as whether the cycle is deterministic (in the
sense of being a low order system), so the decision must be made by the modeler. In §2.,
the cycle is regarded as a relatively low order system and a dynamical model is proposed.

2. On/Off Intermittency. The dearth of spots that occured during the time of Newton
may well be taken as a switching off of the solar cycle. The implied variation between
states of high magnetic activity and virtual inactivity has been called on/off interraittency
in work with N. Platt and C. Tresser. We attempt to understand this process by positing a
subsystem of the solar process that is somewhat short of being overstable. This subsystem
is coupled to a chaotic or turbulent subsystem in such a way that its effective growth
rate is modified. When the the first subsystem is made effectively unstable, it performs
oscillations for some time before settling back into inactivity. For suitable parameters, this
temporal behavior resembles that of the solar cycle.

3. The Solar Tachocline. One way to produce the intermittent dynamical process
of 2 is to have the two postulated subsystems in two spatially disparate regions. (This
notion arose in discussion with D.W. Moore.) The actual cyclic process occurs in a layer
just below the solar convection zone, which is the second subsystem. The tachocline has
been detected by helioseismologists and an attempt to rationalize it made with J.-P. Zahn
(stemming in part from unpublished work with F.P. Bretherton) has been made. This
layer makes the transition between the strong differential rotation of the convection zone
and the nearly rigid rotation of the solar deeps.

4. Waves of Solar Excitation. A closer look at the data shows that the solar variation
takes place in space and time. The longitudinally averaged spacetime portrait of activity
looks like a row of ragged butterflies flying along the time axis with their wings spread in
latitude. This so-called butterfly diagram provides an empirical description of the temporal
evolution of a Poincar6 map of the solar magnetic field, with the sun's outer boundary as
the surface of section. A simple dynamical system made with M.R.E. Proctor describes
the world lines that define the centers of the butterfly wings in latitude. In this picture,
these are the world lines of solitary waves formed in the shallow tachocline acting as a
wave guide. If the tacjhocline is overstable, either because there is an a - w process in
the tachocline, or because of an instability of magnetic buoyancy (as discussed with S.
Childress), we can expect the envelope of the wave to satisfy a complex, time-dependent
Ginzburg-Landau equation. We suggest that the parameters in this equation vary weakly
with latitude. For simple models of this variation, we can obtain equations of motion for
the activity waves that capture many qualitative features of the butterfly diagram.
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5. Solar Maculation. A project with S.P. Meachamn is focussed on the study of vortices
in the tachocline. When the activity wave passes by, the toroidal field is wrapped uip
by the vortices. The field is expelled, but not into the ambient tachocline. Instead it is
assumed to be buoyed inot the convection zone, there to wind upward to the solar surface
to protrude as a spot.

The Role of Eddies in Gulf Stream Entrainment

Melvin E. Stern
Florida State University

A strong potential vorticity gradient in the upper layer of an oceanic jet inhibits
laminar cross-stream flow (and entrainment) in an underlying isopycnal layer even if its
potential vorticity gradient vanishes, as is shown in a two layer quasi-geostrophic model
with piecewise uniform potential vorticity and with cross stream bottom topography. It is
suggested that eddies at the edge of the Gulf Stream are necessary to overcome the con-
straint on entrainment, and to incorporate water from the adjacent "recirculating gyres,"
and to provide the observed downstream increase in stream transport. The entrainment
produced by eddy-shear flow interaction is computed for a wide range of conditions in the
limiting case of a very deep lower layer, this being necessary for comparison with (future)
calculations using the full two layer model. Especially noteworthy is the pronounced ten-
dency for cyclones (anti- cyclones) on the anti-cyclonic (cyclonic) shear side of a jet to
move towards and across the axis of the jet, in agreement with observations of Bane et al
(1989).
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LARGE-SCALE WAVES AND VORTICES

George Sutyrin

P.P.Shirshov Institute of Oceanology
Russian Academy of Sciences

23 Krasikova Street, Moscow 117218
Russia

Emerging of large-scale vortex structures, remaining coherent during many turnaround
times, has been recognized to be typical in planetary atmospheres and oceans. Strongly
nonlinear coherent vortices have the ability of carrying particles over long distances. We
consider how their transport properties are affected by the interaction with the highly
dispersive Rossby waves generated by the beta-effect.

Two well-known types of two-diniensional coherent vortices are (i) the circularly sym-
metric monopole with swirling velocity of the same sign everywhere and (ii) the dipole,
consisting of two closely packed counter-rotating vortices. Any monopolar vortex is sta-
tionary in the absence of the beta-effect, any background flow, forcing and dissipation.
So the monopole cannot transport fluid by itself. On the other hand, coupling of dipolar
partners provides an internal self-propelling mechanism, which causes the dipole to prop-
agate in a direction depending on the relative intensity of two partners. Thus, without
the beta effect, the dipole is able to transport particles trapped in its central part in any

direction.

The dynamics of coherent vortices have been intensively studied during the last
decades, both by analytical, numerical and laboratory methods. On the beta-plane the
permanent form solutions were proved to exist only with zonal direction of their propaga-
tion. In the traditional quasigeostrophic approximation such steadily propagating solutions
have a dipolar structure with zero net .nigular momentum (Flierl, 1987). Within the more
general shallow water model a wide class of westward propagating anticyclonic monopoles
of a size larger than the deformation radius can also steadily persist (Nycander, Sutyrin,
1992). Thus, meridional transport on the beta-plane can not be described in terms of
steadily propagating structures.

An approximate theory for an initial evolution of the wavenumber-1 azimuthal pertur-
bation, which accelerates a monopolar vortex both westward and meridionally, has been
proposed by Sutyrin (1987). This approach was succesfully used for calculating the tra-
jectory of the geostrophic point vortex and the propagation of a strong Gaussian vortex
depending on the radius of deformation (Sutyrin, 1988). For a piece-wise constant poten-
tial vorticity distribution in the vortex core the effect of distortion in the vortex shape in
the evolution of the wavenumber-1 perturbation has been elucidated recently by Sutyrin
and Flierl (1992). To consider long-time evolution of a monopolar vortex it is necessary to
take into account an appearance of higher azimuthal modes as well as the change in the
vortex structure due to the meridional drift and Rossby wave radiation (Sutyrin ,1989).
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The evolution of monopolar and dipolar vortices within the equivalent barotropic

quasigeostrophic equation using a spectral numerical model has been investigated recently

by Hesthaven, Lynov, Rasmussen and Sutyrin (1992). Lagrangian transport of trapped
fluid particles was analysed considering closed isolines of the potential vorticity.

It has been shown that dynamical properties of localized monopolar and dipolar vor-

tices on the beta-plane differ strongly from their properties on the f-plane without the

beta-effect. A strong monopolar vortex, being stationary on the f-plane, provides effec-
tively meridional transport on the beta-plane due to self- propelling by the wavenumber-1

perturbation in agreement with asymptotic theory (Sutyrin, 1987). Strong dipolar vortices,

being most effective for transport on the f-plane, oscillate and propagate predominantly

zonally without essential meridional transport.

An important new feature of the evolution of a strong monopola: vortex on the beta-

plane is the emergence of a tripolar structure due to weak instability caused by meridional

displacement of the vortex center. Rotation and oscillation of the tripole lead to increased

mixing near the boundary of the vortex core and loss of some trapped particles. This

intrincically inviscid mechanism may play an important role in the evolution of coherent

vortices providing an exchange between the vortex core and the surronding flow.

The influence of the beta-effect on initially f-plane dipoles depends on their intensity

and direction of propagation. Weak dipoles can survive without essential radiation only

in the case of eastward direction on the beta-plane. The westward dipole accelerates

while its partners move closer during an adjustment to the steadily propagating state.

The eastward dipole deccelerates due to slight separation of its partners. The steadily

propagating solutions on the beta-plane are thus attractors for initially f-plane dipoles

only when they are strong enough.
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A simple convection model of planetary atmospheres

George Veronis, Yale University

When a two-dimensional layer of fluid is heated non-uniformly at the top surface, the
downward diffusion of heat into the fluid leads to a horizontal pressure gradient which drives
a circulation. Laboratory (Rossby, 1965) and numerical (Beardsley and Festa, 1972) studies
of such a system reveal an asymmetric circulation in which a downward jet of fluid near the
coldest point penetrates into the layer, spreads horizontally in the lower part of the layer,
and pushes the isotherms up toward the top boundary. When the surface temperature
difference, 0 to Ts, is large, the bulk of the fluid at depth acquires a temperature that is
less than 0.3T,. A war',i boundary layer is formed just under the cooler half of the top
boundary and transpor ts heat out of the layer and a cool boundary layer under the warm
half of the top boundary conducts heat downward. The net heat flux vanishes.

The addition of an upward heat flux at the bottom of the layer raises the mean
temperature of the fluid layer and expands the width and compresses the thickness of
the warm bounda y layer, thereby enabling the added heat to escape through the top
boundary. There is a concomitant narrowing and weakening of the cold boundary layer
near the top which decreases the incoming heat through the top.

To simulate conditions at the surface of planetary atmospheres, the fixed surface
temperature at the top boundary was replaced by a heat flux law, k¶T = A(T, - T,),az
where k is the thermometric diffusivity, A is a relaxation constant velocity, and T, is a
given external temperature. Te was taken to be AT sin 7rx/2L, where L is the horizontal
width of the layer. This form is a crude simulation of insolation of planetary atmospheres.
When A is large, the flux law reduces to the fixed surface temperature condition. For very
small A the range of T, is small compared to A T and becomes relatively smaller as A
T is increased. A warm boundary layer forms under the cool half of the surface and a
cool boundary layer is generated below the warm half of the surface, just as in the fixed
temperature case.

When an upward heat flux is introduced at the bottom of the layer, the entire fluid
layer is heated and the surface temperature becomes more nearly isothermal. The warm
boundary layer near the top spreads across the entire width. The overall temperature of
the system becomes larger than AT and the fluid layer is nearly isothermal (very mildly
stably stratified) except for thin boundary layers near the top and bottom. The associated
time- averaged circulation is essentially symmetric about the midpoint of the layer.

The model suggests that the internal heat source of a giant planet leads to a nearly
isothermal, thin, gravitationally unstable "weather layer", overlying a mildly stably strati-
fied thick base. The nearly isothermal surface temperature is consistent with observations
of the surface temperatures of the giant planets.

The system can easily be extended to include rotation. The width-to- depth ratio can
be increased. These two additional features should lead to a more realistic basic model for

planetary atmospheres.
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Vapour flow through a hot porous rock

Andrew W. Woods
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In this presentation, the motion of compressible vapour through a hot porous rock

was described using Darcy's Law and equations for the conservation of mass and enthalpy.

In the limit of small porosity, the vapour rapidly attains the temperature of the host rock,

and only over long time scales relative to that of the flow does the rock cool down. In this

limit, it was shown that the vapour moves according to a non-linear diffusion equation, and

several similarity solutions describing the motion of the vapour in an unbounded domain

were presented.

We then extended the model to include a moving, vaporising liquid-vapour interface

which may be produced when water is injected into the reservoir of hot rock. This interface

propagates faster than the isotherms in the liquid and since the thermal diffusivity is

relatively small compared to the vapour diffusivity, the liquid supplied to the interface is

already at the temperature of the interface. Only a fraction of the liquid supplied to the

interface actually vaporises, the remainder of the liquid causes the interface to advance;

the mass fraction of the injected liquid which vaporises is determined by the amount of

heat released as the rock is invaded by the water and cools.

We developed a similarity solution to describe the coupled problem of the injection

of water from a line source into an unbounded domain. In this problem, a cylindrically

symmetrical vaporising front spreads from the source. We found that as the rate of injection

of liquid is increased, the pressure gradient ahead of the vaporising front also increases

in order that the additional vapour produced can migrate ahead of the interface; as a

result, the interface pressure increases. Therefore, the interface temperature increases

according to the Clausius-Clapeyron equation and so the superheat available from the

rock for vaporising the liquid decreases. Hence, the mass fraction of liquid which vaporises

decreases. At very high flow rates, the mass fraction of the liquid which vaporises becomes

very small; in contrast, at slow injection rates, the maximunm mass fraction of liquid which

may vaporise is approached - this maximum is given by the maximum thermal energy

!
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which may be released by the rock as it is invaded by the liquid - this is a function of the

rock superheat.

We next considered the same process of injection of liquid, but now into a bounded

reservoir. The unbounded similarity solution applies until the vapour has migrated to the

outer edge of the reservoir. However, over longer time-scales, the pressure and vapour con-
tent of the reservoir become nearly uniform except near the point of injection. Therefore,

over longer time scales a very simple bulk model may be used to describe the increase in

pressure and vapour content of the reservoir. This bulk model was successfully compared

with the full solution of the diffusion equation. It was found that the pressure in the reser-

voir may increase until it has nearly reached the saturation pressure, after which point no

more vapour may be produced, and the reservoir fills up with liquid.

The final problem we discussed was the simultaneous injection of water from a line

source and extraction of vapour from a circular sink surrounding the source. After the

initial similarity type transients have decayed, we found that a quasi-steady state is estab-

lished in which the rate of injection and extraction are nearly equal, and the vapour which

is extracted is derived from the vaporised input liquid rather than the original reservoir

vapour. Owing to the non-linear diffusion coefficient, in this quasi-steady solution, tl.

pressure varies non-linearly across the reservoir. This quasi-steady state persists until the

liquid front has advanced from the original point of injection to the point of extraction, at
which stage the reservoir has become full of liquid. The simple bulk model of this process

agrees well with the full numerical solution of the radial diffusion equation.

Further details are given in:
Woods, A.W. and Fitzgerald, S.D., 1992, The generation of vapour in a hot, porous rock

through the injection of liquid, sub-judice, J. Fluid Mech.

Fitzgerald, S.D. and Woods, A.W., 1992, The production and extraction of vapour from

a geothermal reservoir, sub-judice, Geothermics.
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Linear Thermal Convectio in a Model Jupiter
by

Jun-Ichi Yano

A linear theory for thermal convection inside Jupiter has been proposed by Busse
(1970, 1976, 1986). In this Summer School John Hart has talked about 3-convection,
which is a strongly nonlinear version of Busse's model. The purpose of my talk is to look
at the justification for this kind of formulation. A general principle to derive a consistent
formulation for nonlinear dynamical systems has been presented by Ed Spiegel in terms of
central manifold theorem. The theorem namely says that in order to obtain the consistent
derivation of a nonlinear dynamical system, we have to define a countable number of set
of marginally unstable and stable modes. The first job for this purpose is to define the
most unstable (preferred) mode on a complex growth-rate plane. I solely concentrate to
this problem in my talk. It turns out that this problem is by itself tough to solve and also
very interesting.

The system to be considered is under the Boussineq approximation, assuming a ho-
mogeneous heat distribution. We consider a rapidly rotating limit, or a low viscosity limit,
which is considered as a limit of vanishing Ekman number, or a limit of infinite Taylor
number, in terms of nondimensional parameters. The scales of the marginal modes are
measured in terms of either of limiting nondimensional parameters. A WKBJ-type analysis
in this asymptotic limit has been done by Roberts (1968) and Busse (1970). According to
them, marginal convection is basically constrained by Taylor Proudman theorem, so that
it takes a form of a row of Taylor columns aligned along a cylindrical surface coaxial to
the axis of rotation. However the actual radial structure is left to be determined, because
in their simple minded WKBJ-approach predicts a radial scale much larger the azimuthal
scale (but still much shorter than the radius of the system, or the planet). Soward (1977)
tried to solve a higher order modulation equation, which turns out to offer a spatially
growing mode, such that cannot be consistent with the finite domain of the system. If we
examine the operator derivatives which define the modulation equation, it is found that
that the trouble maker is the spatial dispersion of the marginally unstable wave: whenever
the marginal mode is described by a spatially dispersive wave we encounter the spatially
growing mode.

At this point, it is worthwhile to remind what Brian Farrell talked about the temporal
evolution of an unstable disturbance: Brian's point was, if we consider the instability
problem as an initial value problem, the major contributing mode is coming from a point
in a complex wavenumber space, where the complex frequency is non-dispersive against the
complex wavenumber. In the present problem, the frequency does not only depend on the
wavenumber, but also depend on the position (the distence from the axis of rotation). A
simple extension of Brian's reasoning is that we require a vanishing of spatial dispersion on
a complex distance plane. This is also equivalent to seek a complex radial distance where
the Rayleigh number takes an extremum: this is a saddle point on a Rayleigh number
topology.

Consequently, the asymptotically correct critical Rayleigh number takes a value by a
finite factor larger than the value estimated from a simple minded WKBJ-approach. In
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more physical term, a larger Rayleigh number is required than a simple minded WKBJ
solution, because an exponentially decaying tail away from the center of the Taylor columns
is 'maintained' by strong diffusivities there. In order to sustain the Taylor columns against
these strong dissipations, a stronger buoyancy force is required than expected frlom a
conventional WKBJ-type theory.

The diagnosis of the physical balances is also done by using full numerical solutions
with help of Wolfram Hirsching. This diagnosis supports the results of this revised asymp-
totic theory well.
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Basis for a Volatile Transport Model on Pluto
Abstract

GFD Summer Workshop, 1992

E.F. Young

NASA Ames Research Center

The recently completed set of mutual eclipses and occultations between Pluto and
Charon have enabled several research teams [Young and Binzel, 1992, Buie et al., 1992,
Burwitz et al., 19911 to construct albedo maps of Pluto's surface, as shown in Figure 1.
These maps reveal several bright features on Pluto, including a south polar cap with normal
reflectances of 0.8 - 1.0. The maps motivate an examination of frost transport on Pluto in
hopes of explaining the high albedos and extreme contrast of surface features.

There are two systems that can serve as role models for frost transport on Pluto; these
are Triton and lo. The Triton model is characterized by an atmosphere that is nearly
uniform in temperature and pressure, despite the fact that regions of the planet may be in
constant sunlight or darkness for years at a time. The governing agent that maintains the
uniform conditions is the volatile N2 frost present on most of the surface. The vapor pressure
of N2 is a very steep function of temperature. Any appreciable temperature gradient (e.g., a
degree) translates into pressure gradients on the order of 50%. This pressure gradient
cannot be sustained, so the temperature reaches a global equilibrium. The dark side is
heated by frost forming on the surface, and the insolated side is cooled by sublimating frost.
Thus there is a constant wind from the bright side to the dark side.

The global temperature is determined by balancing the total received power (insolation)

and the total emitted power (thermal radiation), which we assume are equal in the steady
state.

[Lsou(l-A)

where T is the global surface temperature, L,u. is the luminosity of the sun, A is Pluto's
average Bond albedo, d is Pluto's distance from the sun, o is the Stefan-Boltzmann
constant, and E is the emissivity of nitrogen frost (assumed to be unity). In the steady state
the insolation and thermal radiation balance each other globally but not locally. When there
is a shortfall or overabundance of sunlight, mass loss from the surface has to make up the
slack.

EH = Lsu,(•.I)(l - A) (•T4 (2)4 7td2

Here H is the latent heat of sublimation, E is the sublimation rate, and (n-.•) is the
projection factor, given by the dot product between vector normals to the local surface and
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the subsolar point respectively. Eq. (2) demonstrates the simplicity with which local surface
mass loss rate, I- , can be calculated using the Triton model.

The Triton model breaks down when the winds required to balance the incipient
pressure imbalances are supersonic. The flux required to balance a given pressure
imbalance will give rise to higher winds if the atmosphere is more rarified. On Io the surface
pressure is so low that volatiles sublimating from the subsolar point basically expand into a
vacuum. They cool and form supersonic winds directed to the back of the planet, but
condense before they get there.

Does Pluto span both the Triton and Io regimes? Pluto's current atmosphere is certainly
dense enough to support a globally uniform atmosphere. We expect Pluto's temperature to
drop about 5.5 K over the next 50 years with a corresponding drop in column abundance of
97% (Fig. 2). The thinner atmosphere will require higher winds to balance the same pres-
sure gradients. When will the maximum wind speed approach the speed of sound? The net
volume of volatiles sublimating from the surface within a closed contour is equal to the
volume of volatiles crossing that contour. In differential form this gives us the equation

where P. is the surface pressure, g is the acceleration due to gravity (about 64 cm/sec2),
and v is the velocity. Equation (3) is the result of vertically integrating the conservation of
mass equation,

a t V• (p v) (4)

bearing in mind that the actual horizontal velocity will undoubtedly be a function of
height. Ignoring effects like turbulence, surface friction or confinement to an Ekman
boundary layer, we use Eq. (3) to get a preliminary expression for the maximum wind
speeds on the planet. We combine Eq.'s (2) and (3), substituting for E and solving for v,
which points radially outward from the subsolar point. We find that v has a maximum 680
from the subsolar point with a v. magnitude of

Vmax = 0.29 g So R (5)
H P,

where S, is the insolation at the subsolar point and R is Pluto's radius. Notice that v,.
is inversely proportional to the column abundance, roughly equivalent to (P, /g).

Because of the steep vapor pressure-temperature relation, a small uncertainty in Pluto's
global temperature translates to large uncertainty in the time of onset of supersonic winds.
Figure 3 shows the year of supersonic cross-over as a function of the planet's global
temperature at perihelion. Notice that no cross-over occurs for perihelion temperatures as
low as 36.7 K. While Pluto's temperature is not currently known, it seems unlikely that it is
lower than nitrogen's x and 0 transition temperature of 35.6 K. Other factors that we have
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not yet considered are thermal inertia of the surface and the potential energy available from
phase transitions of the surface frost.

Figure 1. A map of the geometric albedos of Pluto's sub-Charon hemisphere.
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Figure 2. a and 03 N2 column abundances as a function of time.
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Year of Supersonic Onset
as a Function of Perihelion Temperature
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Figure 3. The year of supersonic onset as a function of the temperature at perihelion.
The A's are the Bond albedos corresponding to a given perihelion
temperature. This model neglects the thermal inertia of the surface.
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Generalized two-layer planetary geostrophic equations
Rupert Ford. Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge,
CB3 9EW, UK.

1 Introduction

This report is concerned with developing conceptually simple models of the large scale circulation of
the ocean, in which the Rossby number is assumed to be so small that the effects of inertia can be
completely neglected. We shall take as our starting point a three-dimensional continuously-stratified
hydrostatic Boussinesq inertialess model - the so-called Planetary Geostrophic Equations:

fkAu = --V4 (1)

0 = -, ý 0 (2)

V 3 .(u,w) = 0 (3)

Ot+(u,w).V30 = 0 (4)

where f is the Coriolis parameter, k is a unit vector in the z direction, u = (u,v) is the horizontal
velocity, w is the vertical velocity, 0 is the buoyancy, .0 is the pressure, V is the two-dimensional gradient
operator, and V3 is the three dimensional gradient operator.

We shall see how to reduce these equations to a two-layer system which possesses the standard two-
layer system, with uniform density (potential temperature) in each layer, as a special case. The neglect
of inertia makes it possible to obtain the general solution by reducing the equations to characteristic
form. In this way we can generalize Salmon's (1992) Gulf Stream model to a set of equations in which
the temperature is everywhere continuous in the vertical as well as horizontal directions.

We investigate the linear and nonlinear waves in the system where possible, with particular reference
to linear Rossby waves propagating over large scale topography, where the basic state is .he relevant
generalization of that given by Salmon (op. cit.). We conclude with some suggestions for future work,
both analytical and numerical.

2 Reduction to a two-layer system

We start by considering the equations (1-4) in isopycnal coordinates - where the vertical coordinate z
is replaced by P. Then (1-4) become

fk^A = -VB (5)

Z = 00 (6)

(O ej O) + 0(/ 0k1
Equations (5-7) can be combined into the single equation

-aBo+O( B, f -'Boo, O)

OB_ + =(B, -0 (8)SO(a,y,O)
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It follows immediately that the solution is steady in 0 coordinates if

Bo, = F(O) (9)
f

for any function F(O). Transforming back into physical space, this is equivalent to

a0
f- = G(O) (10)

for some function G which is related to F. The simplest case, and the only case which we shall consider
in this report, is the case where G takes two distinct constant values, i.e.

G(O) Q Q1 for z>-h(x,y,t) (t)

Q2 for z < -h(x,y,t)

Note that fOI is the potential vorticity for (1-4), so (11) can be regarded as a "uniform potential
vorticity " approximation.

An evolution equation for the interface h(x,y,t) can then be derived. It turns out that, although
motivated by the case where h(z, y, t) is a surface of constant 0, the evolution equations derived by this
method are consistent for any interface, so that in general 0 may vary along the interface on either side
of it.

3 General equations for two layer dynamics

Starting from then general ansatz (10,11), we shall show how to derive a general set of "two layer"
equations for (1- 4). To simplify the following algebra, without loss of generality, we take f -= y. We
start by integrating (10) with respect to z, giving

z

8, = Qi- + Ti(X,y,t) (12)

where the subscript i refers to the layers 1 and 2. Using the hydrostatic equation (2) gives

qi=Qiz 2 + Tiz +1•i (13)
2y

for the pressures in the two layers. From here we can use (1) to give the horizontal velocities in the two
layers. It remains to relate these equations to (3, 4) and hence to derive either prognostic or diagnostic
equations for 1, 02, T1 , T2. We start by eliminating $tj and 42 in favour of the interface depth h and
the vertically integrated streamfunction 4b. The existence of 0, results from the fact that the upper and
lower boundary conditions on the vertical velocity w:

w = 0 atz=0

w = -u.VH atz=-H (14)

are equivalent by (3) to the statement

V.j(uV)dz = 0 (15)
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and therefore there exists a flux streamfunction V, such that

H (u,v)dz (-4,,4') (16)

Continuity of pressure 0 at the interface z = -h implies a relationship between 4'l and 't2 in the
form

Q1 h2 Tih + ±t : -h2 - T~h + ±t (17)

An evolution equation for h is derived from the kinematic condition

D •( )=0 at z= -h (18)

We should note that if the upper boundary z = 0 is allowed to move, we no longer have a vertically
integrated streamfunction for the flow. However, we could assume that the atmosphere is essentially
a zero pressure interface, and hence obtain a relationship between $l and the surface elevation. An
additional evolution equation derived from the kinematic condition for the free surface would replace
the diagnostic equation for 4'.

We should note that, with a rigid lid present, we could still use surface pressure tl in preference to
4, using the condition (15) to derive a diagnostic equation for 4'1. However, note that if we define E
by

E L_ zO (19)
H

then

J(O',f /H) = J(E, 1/H) (20)

Thus the equation for 4' is an equation involving just two Jacobians, whereas the corresponding
equation for 41 typically seems to involve three or more Jacobians. As we shall see later, the possibility
to write the streamfunction equation with just two Jacobian terms can lead to great simplification
in the search for general solutions of the equations. We should also note that the equation (20) is a
hyperbolic equation for 4'. This means that we cannot in general impose boundary conditions that -'
be zero on all boundaries. It turns out that introducing Rayleigh damping in the geostrophic equation
introduces a Laplacian term in (20) which makes it elliptic, and so in a sense the dynamics becomes
well posed only in the presence of at least some sort of damping. For the present report, we have
not retained frictional terms in our analysis, and we assume that any difficulties at boundaries can be
corrected with thin frictional boundary layers over which 4' is adjusted to zero.

We turn now to deriving the evolution equations for T1, 7'2 and h. To derive evolution equations for
T1 and T2, we substitute from (12,13) and (1) into (4). w must be obtained by using (14) and integrating
(3) with respect to z, It turns out that the z-dependent terms cancel exactly. The resulting equations
involve derivatives of $i and 12 with respect to x and y, which are replaced with 4' derivatives using
(16) and (17). The details are lengthy and will not be given here. The result is

a 1  I4'T 1
-+ J ( H, TO )

6yH (
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+ (11h2J( 2,I7,) h (Q - Q2) -- (T, - T2) J(hT1 ) 0 (21)
2y1! yHl (Y

a-- + I J(V' T2 ) - (Q2(H - h) 2(IH + 2h) - 2QOh 3)J T 2

at HI , + h

- Q h2y (!T 1  + (Q1~ - Q2) - (TI T2 )] J(h, T 2 )

+ h(Q - Q2) - (TI - T2)] J ,h) 2HJ(T 1 , T 2)=0 (2))

Since the kinematic condition for h is applied specifically at z = -h, it is clear that it gives rise to
an equation without z dependence. $t and 't2 must be substituted for as in the derivation of the T
equations, and the resulting equation for the evolution of the interface is

T " -H ,-• i J(T ,h) + (--2y-J(T 2, h)

+ V)) 2 J 1h,2y

(QQ-Q)h 4 hH131

+ 2h -J(T 2 ,H) + 1 - h J(TH) +0 (23)
Fy H2  2y Hj

As we have already discussed, th- equation for 0 can always be written in terms of just two
Jacobians. Writing it explicitly gives 

i
3 +3 h T 2  H2 1)

(0,±1=Q2 -Q~ h Q +H h-2 ~ _- , (24))

The immense complexity of the equations (21-24), with high order nonlinearity and coupling between I
upper and lower layer temperature fields and with the interface depth should be contrasted with the
more conventional two-layer model - a specialization of the above system, in which Qi = Q2 = 0 and

T, and T2 ar! assumed to be (distinct) constants. Only h then depends on x,y and t, and its evolution
equation is greatly simplified, since all Jacobians with T, and T2 are zero. The resulting equations are

-h +J V, + J ('-g-,- 1 (1_)=0 (25)

=ýb J ( 9,'1 ) (26

Although the above presentation of these general two-layer equations is almost certainly not the
simplest way in which they can be written, concerted efforts to combine Jacobian terms met with only
,imited success. To make progress, therefore, we sought a specialization which could nonetheless be
thought to capture the essential character of the thermal structure of the ocean. I

I
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4 Restriction to the special case Q2 = T2 = 0

Typically, oceanographic charts show an "upper" layer with a rich thermal structure lying above a deep
lower layer in which the temperature is almost uniform. We therefore specialize at once to the case
where the lower layer temperature 0 is a constant, which may be zero without loss of generality. This
is equivalent to taking Q2 = T2 = 0 in our model. The equations as written simplify somewhat, but it
turns out that the form of conserved quantities suggests a way to write this reduced system in such a
way that only two Jacobians appear with the time derivative in each of the evolution equations.

We begin by noting that, if the surface pressure formulation is used instead of the streamfunction
formulation, the equation for T, takes the very simple form

S+ I-J(4 1 ,Tl) 0 (27)
at y

It therefore follows that

' IJI yF(Ti)dxd!J 0 (28)

for any function F(TI). We also recall that since 9 is conserved on fluid particles,

d f dy] _ dz G'(0) = 0 (29)

for any function G. Performing the z integration explicitly with our chosen form of 9 gives

d f f dzdyY"[G(T) - G(T - Qh/y)] = 0 (30)

I- Q

Note that T - Qh/y is fhe temperature just above the deep cold lower layer. It follows that

d f f dxdyyG(T-Qhy)= 0 (31)

and this motivates us to prove the following result:

d f f dxdyyF(O(x,y,h(xy, t),t)) = 0 (32)

for any F and any h(x, y, t) such that

D-t(z - h) = 0 at z =h (33)Dth

The proof proceeds as follows. We regard O(z, y, t) a function of x, y and t such that O(z, y, t)
O(z,y,z,t) on z = h(z,y,t). Then

o 000 89 OOh
-9 - O aO A O-(34)

0e0 a9 0O0h (35)

5- x + Z Tx
00+ T h (36)

Then
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dd JJyF(O(z, y, t)dxdy (37)

= yF'(E)) (38)

J yF'(O)(uO. + v*,, + wO,) (39)

J F'() [u(e - O5hz) + v(, - Ohs) + wO h(40)

= - f F'(e)(yuOe + yv,,e) + y#aF'(0)-D (z - h) (41)

= + /OF'(e)V.(yu) - v.(OF'(e)yu) (42)

= -//V.(OF'(O)yu) (43)

We assume that boundary terms are unimportant, and so this remaining integral can be set to zero
by converting it into a boundary integral by the divergence theorem. This completes our proof.

It now seems natural to work not with T and h, but instead to work with T and T - Qh/y, since by
the above argument, if either is initially zero then it remains zero for all time. We now rewrite (21-24)
with T2 = Q2 = 0, and using T. = T and T+ - T - Qh/y and 0 as the three remaining dependent
variables. We choose the notation T, to represent the temperature at the surface, and T+ to represent
the temperature just above the thermocline, z = -h+. Then, after some algebra, one obtains

1n,' T' 1\ 2 J(E, T.) (44)
- + J(OIT.)+ "2Q- y'T)

--• + IJ(kT+) = +J(E,T+) (45)

J(O,y/H) = J(E, 1/H) (46)

where E is the energy density, given by

E " zOdz = ( - + L+ (47)Q2  6 3
It is clear from the form of these equations that if either T, or T+ is initially constant, then it

remains constant for all time. Moreover, as we shall see, in the simplest steady solutions, in which
T., T+ and ik are arbitrary functions of y, and H is constant, there must be gradients of both T, and
T+ in the basic states if linear disturbances on these states are to be unstable.

4.1 Linear stability of zonal flows

To gain some insight into the stability of steady solutions, we consider the case where the bottom
topography is flat (H constant), and the basic states T. and T+ are arbitrary functions of y only. We
consider disturbances of the form eik(-2t). Linearizing (46) immediately implies 0' = 0. We generally
regard k as a fixed real wavenumber and c as a possibly complex growth rate. However, as we shall
see, the stability criterion does not depend on k, so we may, if we prefer, regard kc, the frequency, as
real, and deduce a downstream growth rate Q•k. Linearizing gives
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-T- CT.'T- -T. H(E'(To)y - T;Ey)
H

+ Y-(T+ T+-T )(T.) -(T-) 2Q T) (48)

-+ 01 ,T+ I (E'(T+)y - T+Ey) (49)

For convenience, we write
aT; +Tr (50)

where
a -I (T,'- T'+4); -- !+(.- T+) (51)

By considering (48,49) as an eigenvalue problem for c, we see that it is straightforward to derive a
condition for which c is complex. Since eigenvalues for a system of linear equations with real coefficients
must come in complex conjugate pairs, this implies a growing disturbance for the system.

We remark that this is an eigenvalue calculation for each latitude y separately. Disturbances may
grow at some latitudes and oscillate at others. The behaviour at one latitude does not influence the
behaviour at another, and we should think of disturbances of the form

STo,T - F(y)e'j'(--c(')t) (2S T÷ (52)

These are not really "modes" for the system. True eigenmodes, in whic c takes only one value,
would in general require that F be a 6-function of y.

Proceeding to calculate the instability condition, we obtain

. ()(T÷)Io - Q(T T+(T+)) + )y +

4 ' (L + (T.).(T+)y < 0 (53)

The full stability condition is perhaps difficult to interpret. However, it is clear that a necessary,
though not sufficient condition, is that

-- + (T)(T+)y < 0 (54)

If we assume that the ocean is stably stratified, so that T. > T+ > 0, then a > 0. Moreover,

T+ + _L T+ (55)
Q yH Q (1--HI(T.-T+))

Now T. - T+ = Qh/y < QH/y and hence we have a necessary condition for baroclinic instability:

(T°)Y(T+)y < 0 (56)

This condition is similar to more familiar baroclinic instability criteria, in which one typically
requires oppositely signed potential vorticity gradients in different vertical layers for instability. A
more complete physical understanding of this instability condition has not been attempted.

However, if we recall that T, and/or T+ being constant are symmetries of the system, we can see
at once that there is no linear symmetry breaking instability - the instabilty criterion (56) cannot be
met if either T. or T+ is constant.
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4.2 Nonlinear stability

The non-existence of linear symmetry breaking instabilities does not, of course, mean that there might
not be nonlinear instability mechanisms which can act to destroy the basic flow.

As we have mentioned previously, standard two-layer models have a constant temperature jump
across the thermocline. In the case where that jump is zero, their effective "reduced gravity" beconmes
zero, and all that remains of the dynamics is an essentially instantaneous response to wind forcing. In
our model, however, setting the thermocline temperature jump T+ to zero is merely one case of a whole
class of symmetries in which T+ is constant everywhere. We have been particularly interested in the
case T+ = 0, since a jump in the stratification at the thermocline -i.e. 0. discontinuous - seems closer
to observations than a jump in the temperature at the thermocline - i.e. T+ $ 0.

Now, assuming that the basic state is given by T+ = 0, we may suppose that small disturbances
might develop on the interface for which T+ # 0. If these were unstable, we would have found a
symmetry breaking instability for the symmetry T+ = 0. To see that no such symmetry breaking
instability exists, we return to the general result given by (32,33), which states that

Sf f dxdyyF(O) = 0 (57)

on a material surface for any function F. Choosing the material surface to be a surface just above
the thermocline, where 0 = T+, and choosing F(O) = 02, we obtain

d J dddyyT' = 0 (58)

Now, we assume that T+ is small, since its basic state value is zero, so it is comprised only of
disturbance quantities. Then, in the above norm, which is similar in spirit to the enstrophy norm
for two dimensional vortex dynamics, the flow is nonlinearly stable, provided we restrict ourselves to a
domain in which y is single-signed. In that case, it is clear that if 7T+ is to become large, it must do so in
only a very localized way, which would presumably be prevented by the reintroduction of some form of
Rayleigh damping in the horizontal momentum equation (1), or diffusion in the temperature equation
(4). We therefore conclude that no symmetry breaking instability exists for the symmetry T+ = 0.
Of course, the argument does not apply to the case T+ constant but non-zero, since then yT2 is an
order-one quantity. However, we feel that there is no a priori reason why a uniform temperature jump
should be natural for large scale ocean dynamics, and we concentrate hereafter on the case T+ = 0,
safe in the knowledge that the symmetry cannot be broken by instabilities which may be present in a
more general two-layer model of the type we have been developing.

5 Restriction to the case T, = Qh/y

Having already obtained evolution equations for our reduced two layer system in terms of T+ and
T,, one might be tempted to think that the simplification T+ = 0 could not simplify the equations
any further than simply setting T+ = 0 in (44-46). However, since we have effectively reduced the
dynamics to a single evolution equation for T., we are prompted to compare our system with the more
conventional one given by (25,26). To do this, we convert (44) in the case T+ = 0 into an equation for
the thermocline depth h. We recall that, with T+ = 0, h is given by T. = Qh/y. After some algebra,
one obtains I

t HyI
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- (60)

Note that these equations are apparently identical to (25, 26) under the replacement

'h h--2 Qh--(61)
2 6y

which is really a rule for replacing g' with Qh/3y in the first argument of the Jocobians in (25,26).
However, it is sensitive to the way in which (25) is written. For example, in place of

2(62

we could have written

J (9'h , h (1 _- ) (63)

In this form, the substitution (61) into (25) would not recover (59).
The remainder of this report will be concerned with the equations (59,60), with a view to contrasting

their behaviour with (25,26).
We shall start by considering the general solutions to these equations, and then go on to consider

waves propagating on certain steady solutions.

6 Steady state solutions of the reduced equations

The aim of this section is to classify the solutions of

± (0 j(h (1 0.)= (64)

j (Qh3 ' i 1 )(65)

In solving a set of equations such as (64,65), one strategy is to find some transformation of the

independent variables which reduces the equations to semi-linear form. The method of characteristics
can then be used to integrate the equations along characteristics. If Riemann invariants exist, it
is frequently then preferable to return to the c;ziginal equations, using the Riemann invariants as the
independent variables. Special cases arise in the case of simple waves, when one or other of the Riemann
invariants is uniform over a region of space, and the form of the solution appears more natural.

One can see at once that the equations (64,65) can be put into semi-linear form through the choice
of independent variables a and 8 defined by

_ . (66)

It turns out that the Riemann invariants are

qH = ; q2 = -h (67)
Y Y
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and the characteristic equations are

dfJ hH
q, constant on - - (68)

da 3 - 2h/H

q2 constant on dL3 -a 2-( 3 ) (69)

Then, rewriting (64,65) in terms of qjq2 and 77 h2/y, we obtain

q + j ( 0 (70)
91 +92-6, 1q1+ q2) (0

___ 2(Qq
2  q2(1

qq + q-'i(q, + q2(71)

The aim now is to write these equations in such a form that we obtain two equations, where q,
appears as the second argument of the Jacobians in one equation, and q2 appears as the second argument
of the Jacobians in the other equation. A little manipulation shows that

J(Vl,, q) + Q(q1 + 3 q2)J(71, q1 ) = 0 (72)
J(,q) q J (,q2) = 0 (73)

J(•bq, 6,"q q,

Now, in the case where J(ql,q 2) j4 0, we can take q, and Q2 as independent variables, and we may
take the Jacobians with respect to q, and q2. The result is

_q 6 Qq8 ( = 0  (74)

el Q(q, + 3q2) Oiq -0 (75)
Oq2 6 Oq=

Differentiating (74) with respect to q2 and (75) with respect to q, and adding gives

Q e2__7

T (q, + q2)0q-- q2  = 0 (76)

Then, since q, + q2 = H/y 5 0, we can write

h F'(qi) G'(q2) + (77)
q, q,

for arbitrary functions F and G. Substituting back into (74) and (75) readily gives

4' = Q( 2qF'(qi) - 3F(q1 ) - qG'(q2 ) - 3q 2G'(q2 ) + 3G(q2 )) (78)

In the case where J(ql,q 2 ) = 0, we let H and a - H/y be the independent variables, and define
1 - h/H. Then (73) becomes

LI
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I jt Wa j (13~4 (79)

I which gives

L97 Q 2 0 .a87b _ Q 2 0 (80)

Moreover, since J(qi, q2) = 0, we have

I hE( (81)

for some function E. Therefore

I h y h E(a) (82)
71=W13 a

7 -H = 0 (83)

and hence (80) can be integrated once with respect to H to give

SH ( R(a) - Q d H .A(a) (84)

Then substituting 
into (72) gives

J(,' 4) + J 6 H~a,(1- )=0 (85)

I Expanding and factorizing gives

I (~~4a) +243 ((a(' - .))=0 (86)

and hence
S= const const

4=-- or 4= 1+-- (87)

i.e., either

q, = constant or q2 = constant (88)

SSubstituting for 10 gives

q, constant, k = R (H)+ "'q3Y (89)

or

q2 constant, X = R (H) QH3 (1-•-Y) 2(1+_.) (90)\Y 6V2 HH
The situation we have now arrived at is very similar to the one arrived at by Salmon for the general

solution of (25,26). However, the appearance of the corresponding physical system, particularly in the
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thermal layer above the thermocline, is quite different, and the temperature is continuous across the
thermocline.

As Salmon remarks, it is difficult to see how to use (77, 78) to construct exact steady solutions of
(59,60). However, by judicious choice of the special solutions, in which q, or q2 was constant, he was
able to construct a model of the Gulf Stream with a Southward return flow in an internal boundary
layer required to resolve a discontinuity in 4' between the regions q, constant and q2 constant. The
procedure is not a rational one, since there is no obvious reason to expect the forced dissipative system
to evolve into a state in which one or other of the ql are constant, with an internal boundary !ayer
between them. However, for the purpose of the present report, we are interested in comparing the
systems (59,60) and (25,26), and so we shall now proceed to compute the corresponding Gulf Stream
solution for (59,60).

7 Reconstruction of the Gulf Stream solution

Following Salmon (1992), we consider the ocean to consist of three regions:

(1) A Southern Region, in which q, is constant, h cx y, and the thermocline is at finite depth;

(2) A Gulf Stream region, in which q2 is constant, (H - h) cx y, and the thermocline outcrops (h = 0)
along a line of constant H/y;

(3) A Northern Region, in which the upper thermal layer is completely absent, the temperature is
zero, and the streamfunction 7P is an arbitrary function of H/y.

To be more precise, we have the three regions

H0 H
1 :- > - (91)

Y2 Y
H0 H H0

2 : H > Ho (92)
312 3 1 i
H H0

3 : > Ho (93)
Y Y2

7.1 Region 1

In region 3, h is zero, and the streamfunction is allowed to be an arbitrary function of H/y, i.e.

4' = 0'o (H) (94)

7.2 Region 2

To match the solution (94) onto region 2, we impose continuity of h across the boundary. Since h = 0
in region 3, and q2 is constant in region 2, the boundary must be a line of constant H/y. It follows that

q2 = 1/y1. It turns out that we can use the arbitrary function available to us in the solution for V, to
impose that 4' = 4'o in the deep ocean where H is a constant, which we shall here set equal to 1. Thus
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h = H - y (95)Y1

(H Q' H2(H - H o) (96)-= 00j1_,H y1H+•(6

7.3 Region 3

It follows from elementary considerations that a boundary between regions of constant q, and constant
q2 must also be a line of constant H/y. Then, by continuity of h across the boundary, we have
q, = (Y1 - y2)/Y1Y2. Again, we can use the available arbitrary function of H/y in the streamfunction
to impose that 4 = 4'o in the deep ocean. Then

h - Y2 (97)

Yx 3 1 2

h' = • 98

7.4 Southward return current

The key new component about Salmon's Gulf Stream model was the prediction of a Southward return
current concentrated at the internal boundary between regions one and two as a result of a discontinuity
of 4 there. As one might have expected, this same feature is present in this model. The jump in '0 is
given by

AV,= QH)3yI(y_ - y2)'(y2 - Y) (99)

2 (Y1l3Y2)~"3

This takes the same form as the jump found by Salmon for the conventional two-layer model:
1 r2Y1 -- Y2,

AO = '04'gH --.2.Y2( - Y) (100)

and is identical if Q and g' are related by

2g'y2 (101)
- Ho(y1 - Y2)

We have not attempted to compare (99) with observations. It would be interesting to see whether
(99) or (100) could be regarded as in any sence the more realistic model.

8 Linear waves over mid-ocean topography

We have now shown that it is possible to reconstruct Salmon's Gulf Stream solution using our reduced
set of equations (59,60). However, the solution is not entirely rational. The choice of the "separation
latitudes" y, and Y2 is arbitrary. Moreover, there is no obvious reason why one should choose the
special solutions, rather than try to use some combination of the general solutions, if only one could
be sufficiently ingenious. Perhaps the internal boundary layer and the associated Southward return
current could be avoided by suitable choices of F and G in (77,78).
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One way to try to address these questions is to study the time dependent dynamics of (59,60),
rather than rely on the steady states found in §6.

The general problem is that, with three independent variables z,y and t, the method of character-
istics is no longer available as a method of general solution. In the absence of topography, of course,
V, is an arbitrary function of y, and the remaining equation in (59,60) is a nonlinear wave equation
corresponding to (nondispersive) Rossby waves.

Of course, the nonlinear wave equation can develop shocks, and in general some form of diffusion
is needed to resolve these difficulties. There is high-order nonlinearity in the system, and one might
suppose that travelling wave solutions could possess multiple shocks, which can completely change the
nature of the solution at large time (Lee-Bapty & Crighton, 1987). However, it turns out that, for
0 < h < H, there is only one value of h for a given travelling wave speed, and so the more conventional
Taylor shock analysis is appropriate in this case.

The original motivation for using a set of equations such as (59,60) was to include topography at
leading order in the dynamics, and one is tempted to ask whether it might be possible to derive some
form of jump condition for nonlinear waves propagating over a rapid jump in bottom depth H.

To gain some insight into this problem, we have considered the case of linear waves propagating over
an arbitrary bottom topography. We could have chosen to linearize about the state h = 0. However,
we are really more interested in perturbations about our supposed Gulf Stream solution, so we have
chosen instead to linearize about the states q, constant and q2 constant.

8.1 Linearization about ql constant

In this section, we consider linear waves propagating on the basic state given by

h ay (102)

•b -a_ (1--3 E0(103)

where a and H0 are constants. a corresponds to q1, and H0 should be thought of as some reference
depth. Recall that we may add to 4 any arbitrary function of H/y. We have chosen not to do so here
for simplicity - technically there would not seem to be any difficulty in doing so. To fix our ideas, let
us consider a topography of the form

1 o for z > x0

H() = (x) for z, < z < xo (104)
H1 for x < x 1

In the regions where H is constant H0 or H1 , 0' is an arbitrary function of y, which we shall
tentatively set to zero. h' then satisfies the linear wave equation

Oh', ( O a' O3 ý 0h'I
"_r+ Iy + _H0 (105)
Ot 2y 3Hj 8

Recalling the H > h = ay, it straightforward to see that this corresponds to westward wave
propagation, consistent with our ideas about Rossby waves. Notice that h' can have arbitrary y
dependence - y essentially behaves as parameter in (105).

Given that, in the absence of strong adverse 0', Rossby waves propagate westward in this model, we
shall set 0' = 0 in the eastern "basin" where H = H0, and concentrate our attention on the behaviour

of linear wave they encounter the region where H is an arbitrary function of x.
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The full linear wave equations are

Oh' +h' + (4
+ j(I (I T)) + = 0 (106)

= (Qhh ,) (107)

In the region with non-trivial topography, it is convenient to define new independent variables

1  y (108)

Then from (107) we have

o0- + i9 h 0 (109)

5a a/8 k 2 )J
We can integrate this at once by introducing a variable 4o such that

____ 04' 1 42 h I- (110)

If we now let

0 _i; ~ ,/)_ ,,_ x 11

then, substituting into (106) and collecting terms we obtain

(a 2a 2 aHoý 02t 1 024 (2iwa 4aaHo&\ 0(1
W2 - 3/ 5- ,3 5/"3f /30a0/3 \•f Q-'f3 3/ /a= 0  (112)

We note that, since 1/=3_ H/y $ 0, (112) is always a hyperbolic system. Moreover, since the
equations for the characteristics depend only on the coefficients of the highest derivatives, in the a - P
coordinate system they are independent of of the frequency of the waves w, and of the details of the
topography, represented by J.

The characteristics for (112) are given by lines of constant Vp, where Vp satisfies the equation

a - 2 2aHo 1
\j32  3/3 oa +~' 0.•o=0 (113)

One branch of the solution of (113) is simply Vp, = 0, which corresponds to characteristic lines of
constant /3 _= y/H. For the other family of characteristics, we obtain wp constant on lines given by

da - 2 aHoa (114)

d)3 3 3
Inetgrating this gives

/3 aHo/32
= constant (115)a 3
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We therefore take as the characteristic variables

a _ 116
a 3

Rewriting (112) in terms of ý and 71 gives

( 2iw+ 1 (117)

4,+(Qa 2  
t/

where a and J are to be regarded as functions of ý and 17.
Recall that we were initially interested in the limit of a steep slope. Now, if H depends only on x,

we have that

- 8(g,~) )_ 1 dH (118)

O(x,y) H3 dz

which is large if the slope is steep. Therefore, in the limit of steep slope, we can neglect the J term
in (117). This is clearly equivalent to the limit of small w, since high frequency waves will have many
wavelengths over the slope, whereas low frequency waves will essentially not be expected to oscillate
appreciably over the slope if the slope is sufficiently steep.

To avoid a lengthy study of the effects of different types of topography, we have chosen to concentrate
on the limit J -+ 0. Then we can integrate (117) once to obtain 4( and, interpreting this in terms of
the original equations, we obtain

h'= F(ý)y (119)

for some arbitrary function F(ý). In principle F is chosen from boundary data at the eastern edge
of the slope, since it should be forced by westward proagating Rossby waves incident on the topography.

Since we have effectively scaled time dependence out of our problem for the slope region, we note
that we could have obtained the result (119) directly from the general solution of the steady problem
(77, 78). To see this, first rewrite (77) in the form

ql = F'-l(hql - G'(q 2 )) (120)

and let F'-'(x) = a, constant, so that h = ay. Now since F' takes all values between -oo and oo,
we can regard it as the limit of straight line passing through the point (a, 0) with gradient becoming
infinitely steep. Therefore it is consistant to take F(ql) = 0 for q, = a. Hence

7, = ý-(2a'y - 3(a + q2)G'(q2) + 3G(q2)) (121)

To obtain 4' in the form (103), we must take
1

G'(q 2) = -1a 3 Ho(q 2 + a) 2  (122)
3

We now suppose that F- 1 and G are allowed to have small perturbations of order E to their functional
forms given above. Then

q, = a + cFi(a2Y - G'(q2 )) (123)

where F1 is an arbitrary function, from which we obtain the perturbation h' in the form
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h' = F(•)y (124)

for an arbitrary function F, and for

y - 1allo - al°3 (125)

as before.
We are now in a position to describe the effect of a rapid change in depth with z on a Rossby

wave propagating on a basic state with q, constant. We imagine that the wave is characterized by a
disturbance height field h' over some latitude range along the Eastern boundary of the topography.
Then the disturbance is transmitted across the ridge by keeping h'/y constant on lines of constant •.
In the limit investigated here, the transmission processes is effectively instantaneous.

To get some idea of how this might effect propagating Rossby waves in practise, we examine lines
of constant ý :or cases of possible oceanographic interest.

Typical characteristics of constant ý are shown in figure 1. In all cases, a = 1, y runs from 0 at
the foot (South) of the diagrams to 1 at the top (North). The bottom depth is 1 at the left (West)
side, increasing linearly to a constant value H0 > 1 (see figure captions) on the right (East). The
basic state and topography are thus arranged so that the thermocline touches the floor of the ocean
in the North-West corner of the domains shown in figure 1. We have chosen the depth of the ocean
is decreasing from East to West, so the waves can be thought of as incident on a ridge, such as the
mid-Atlantic ridge.

Notice that, sufficiently far South, the characteristics cross the ridge, but that in Northern lattitudes
the characteristics turn and head North along the ridge. Eventually these characteristics would re-
emerge from the ridge on the Eastward side, but not before the thermocline depth h had exceeded H.
In our solutions, we have in mind that the characteristics would encounter the internal boundary layer
where the transition from constant q, to constant q2 occurs as they head North.

The equivalent characteristics for the standard model are shown in figure 2. In general, although
the characteristics are deflected slightly more in the standard model, we feel that the two models are
give remarkably similar results in all cases considered.

8.2 Linearization about the basic state q2 constant

Having completed the analysis for Rossby waves propagating over topography in the case of constant

q,, there is nothing to prevent us from repeating the entire analysis in the case of constant q2. However,
since we have restricted our investigation to the rapid jump limit, it is sufficient, as we have aruged
above, to derive steady perturbations from the general solution of the steady equations (64,65).

This time, we rewrite (77) as

q2 = G'-'(qlh - F'(ql)) (126)

An entirely analogous set of calculations to those presented above gives q2 = a, constant, and

F'(ql) 1 Ho 2(q +a)- a (127)
3 (q, + a)2/

from which it follows that

q2 = G'-1 (hq - 1H0 (2H- + a3 q(H))) (128)



Repeating arguments given above, we find

h' = G(C)y (129)

for an arbitrary function G, where • is the equivalent characteristic variable for the case of constant
q2, and is given by

C=9 -q2 - Ho 2H+q2 (130)\Y 3 ( Y H

It remains to check the direction of Rossby wave propagation for this basic state when H is constant.
After some manipulation, we can obtain the equation for linear waves propagating on the basic state
q2 constant, b = 0 in the form

Oh' (H + 2yq2) (H - q2y) Oh' (3
YT yH

from which one can easily verify that tineazized disturbances are westward progating.
Typical characteristics of constant ( are shown in figure 3. We use the same topography as for

figures 1 & 2. Here q2 = 1, so the thermocline outcrops at in the North-West corner of the domain in
each case, and otherwise h > 0.

Note the stark constrast with figure 1. For the case q2 constant, characteristics in the Southmost
part of the domain do not cross the ridge for small jumps in height. As the jump in height is increased,
increasingly fewer characteristics cross the ridge, until eventually none does. Thic complete inability
of characteristics to cross a topographic obstacle has not been observed in the case of constant q1.

The corresponding characteristics for the standard model in this case are shown in figure 4. Again,we
remark that they are very similar to those in figure 3.

9 Remarks

Our original goal for this report was to understand the behaviour of the planetary geostrophic equations
(1 - 4) when a layer structure of form (11) was imposed.

We have concluded that the general two-layer equations seemed too complex for analytical progress,
and we found it convenient to reduce to the case where tL. lower layer stratification and temperature
were zero.

The resulting system was observed to possess baroclinic instability for certain arrangements of the
surface and thermocline temperatures T, and T+, but was shown to be nonlinearly stable when T+ was
initially small. This justified our subsequent restriction to the case T+ = 0.

We were then able to reconstruct a Gulf Stream solution in much the same way as Salmon (1992).
The essential point of Salmon's Gulf Stream - the Southward counter current concentrated in an internal
boundary layer - survived. Indeed, it was possible to express our upper layer potential vorticity Q in
terms of his reduced gravity g' in such a way that the reiurn current was identical, although that
relationship depended on the "separation latitudes" yi and Y2, which are not set mechanistically in
Salmon's model.

To investigate the dynamics of the system, we have considered linear waves propagating on the
basic states required by the Gulf Stream solutions. We have seen that, as Westward propagating
Rossby waves approach a mid-ocean ridge, waves propagating in thc region ql constant are deflected
Northwards. Si,....-iently far South, the waves will propagate across the ridge and emerge on the other
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side, whereas further North the deflection is greater and eventually the waves are deflected along the
ridge into the internal boundary layer between the two regions of constant qi.

Waves approaching the ridge in the region q2 constant, however, are all deflected South along the
ridge towards the internal boundary layer. It is possible that none are transmitted across the ridge, a
situation which is impossible in the case q, constant. In view of this, we might suppose that the basic
states described by this arrangement of the thermocline might experience considerable disruption if a
significant quantity of Rossby waves are generated in the Eastern ocean, particularly in the region of
constant q2, as waves seem to be focussed into the internal boundary layer.

The existance of considerable regions where the waves cannot cross the ridge suggests that a general
jump condition for nonlinear waves propagating on the thermocline crossing a ridge is unlikely to exist.
In addition, the fact that many waves travel a large distance along the ridge must call into question
the steep jump approximation. Time has not permitted a complete investigation of the dependence ,f
the ý and C characteristics on 3.
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12 Figure Captions

"* Figure 1 Characteristics of constant ý, for Ho = 1.1 (a), 1.3 (b), and 2 (c). For explanation, see
text.

"* Figure 2 As figure 1, but for standard model

"* Figure 3 Characteristics of constant C, for H0 = 1.1 (a), 1.3 (b), and 2 (c).

"* Figure 4 As figure 3, but for standard model
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Baroclinic instability in a
quasigeostrophic planetary

interior

By Richard Holme, Harvard University.

1 Introduction

The surface temperature distributions of the outer planets form some of
the most unexpected and puzzling data obtained by the Voyager spacecraft.
The surface temperatures of Jupiter and Saturn are almost uniform, despite
a dominant contribution to their het budget from solar insolation, which
would suggest a decrease in temperature with latitude as seen on the Earth.
Uranus is actually hotter on the face currently shielded from the sun. The
simplest explanation for these observations is that there is a very efficient
mechanism for heat transfer. There are conflicting views on how this is
achieved. Williams (1979) has suggested that the observations can be ex-
plained by thermal transfer within the surface weather layer of the planets,
while Ingersoll and Porco (1978) prefer convection within the planets deep
interior. Here we suggest an alternative - that the planets are internally sta-
bly stratified, and that heat is transported by sloping convection driven by
a baroclinic instability.

Our approach is as follows. Firstly we derive a quasigeostrophic formula-
tion for motions within a cylindrical shell bounded by the spherical planetary
surface, and demonstrate that this formalism is self-consistent by deriving an
energy conservation relation. We then examine the stability of a basic state
of purely zonal flow, both analytically by deriving a Rayleigh stability crite-
rion, and also numerically. Finally, we draw conclusions as to what extent
our results help to explain the observations.
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2 Deep Quasigeostrophy for Jovian planets

We model the basic state of a Jovian planet as stably stratified and barotropic
with spherical symmetry. Surfaces of constant basic state entropy (So), tem-
perature (To), density (p) and gravitational potential (4) coincide and are
functions only of spherical radius R. We assume that the interiors of the
planets are homogeneous and so neglect the effect of phase changes and dis-
continuous chemical differentiation. We extend the anelastic formulation of
Ingersoll and Pollard (1982) to allow for a non-adiabatic basic state. The
governing equations for the system are then continuity,

V.(pov) = 0, (1)

conservation of momentum,
dv
d- + 2fl A v = -VM -6sVTo, (2)

and conservation of energy,

dts
-- •-+ vV~o 0,(3)

where
M = E +- To6s - jTodSo. (4)

Here E is enthalpy, Q? is the rotation of the planet, and bs is the departure
of entropy from the basic state.

We wish to simplify these equations, and so consider motions within a
planet of radius Ro, which are confined to a cylindrical shell, central radius
ro, internal and external radii r, and r2 . This is shown schematically in
Figure 1. We adopt a right handed coordinate system (0, r, z), where 0 is a
westward longitude, with corresponding velocities (u, v, w). This is shown in
Figure 2. We consider variations on the basic state which may vary rapidly
in the i direction, but slowly in the B and i directions. For perturbation
variables v, M and 6s,

8 1 8 1 10 1 I
ar~ ', 1 ~a , 1Oa , (5)

I

1
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ro r

r,

, r2

Figure 1: Cylindrical zone containing motion

V,r

0 WZ

Figure 2: Coordinate system
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with L << Ro, but for base state variables,
09 1
a R-" (6)

The continuity equation suggests velocity scalings

V-LU. (7)
-Ro

A surface boundary condition of no normal velocity requires a scaling

L (8)

We assume a quasigeostrophic formulation,

L U
WO UFL << 1.(9)

To satisfy the continuity equation, we define a stream function V), such that

_ V 18o , M ( 1L (r/ ) t*- (10)

U 8r' r 4 )=j M'~ -r~ 9r ~ 0)

where C is the vorticity. Using this, the anelastic equations may be written

2_ 8P + z dTo 0
TZ iidR 0 '(1

d( 20l (1Oi dp + ) 1 O1 s dTo (12)dt p R,900dR + zpw = - R W_ dR '

ds +1 7 zw)dSR=0. (13)

To further simplify these equations, we adopt a new, non-orthogonal co-
ordinate system, based upon r, the cylindrical radius, and R, the spherical
radius. This would normally complicate things a good deal: for example,
differentiation by r and R is not commutative. However, to first order the
problems are not encountered here, as the additional cross terms may be
neglected by the scaling we have adopted. We define a radial velocity

R=-v+-zw. (14)
R R

I
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In this coordinate system, the equations of motion are written

0¢ cdTo
2 0 + s o• = 0, (15)

OR dR

dt--W+2R - \z 00 p TR z) - RO0 dR'
d6s •dSo--- + R-SO = 0. (17)
dT dE?

Substituting for bs from equation (15) into equations (16) and (17) we obtain
a vorticity equation

2  - 2d(-+ - R-il =0, (18)

dt 00 P0 kzI

and a heat equation
d ( +-R=0, (19)
dt OR I2P

where N is the Brunt-Vaisala frequency, defined

N 2 _dSo dTo (20)
dR dR"

N 2 is greater than 0 because of stable stratification. Eliminating /, we obtain

z 2q =0, (21)

dt

where we define the potential vorticity q as

q r-2 + zR 09 4 1-) (22)

We may express several relevant boundary conditions very naturally in this
formulation. Firstly, we require no normal velocity at the surface of the
planet. Using equation (19) gives the condition

d?=0= t 8R(•• =0 (23)
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I

at R = R,. We note also that in the equatorial plane, the i and Rk vectors
are identical. Thus we require the components of velocity in these directions
to be identical also. At z = 0, this requires

-r _Y_ ) 2Q d (94'\(24
0 -- N-d I . (24)

3 Energy considerations

As with conventional quasigeostrophy, we may derive a global energy conser-
vation relation for our motion. We consider the cylindrical shell bounded by
the planet's surface, the equatorial plane, and solid walls at r, and r2 , such
that there is no normal velocity through the cylindrical surfaces. This may
seem unrealistic, but similar approaches are used successfully in meteorology
and oceanography. The requirement could also be satisfied by the amplitude
of the motion tending to zero towards the boundaries. Hence, in addition to
the boundary conditions (23) and (24), we have

1ay,

r = ri, r2 =ý IP = 0- (25)
r 98

One further boundary condition is required. This is obtained by integrat-
ing the 0 component of the momentum equation (2) along a closed circular
contour, radius r = r, or r2. The term in VM vanishes by Stoke's theorem,
while To is a function of R only, and so VT0 has no azimuthal component.
The remaining terms require

a1~u au U auv UV aOt + r r- +---r W-2 v dO = 0. (26)

At r, and r2 , v = 0, and the z-derivative term is of low order. Further

Uu u 1 0u 2

2(27) Ir 80 2r 90 'I

which, as 0 is a periodic coordinate, integrates to 0. Thus

J dO = -2--r = 0. (28)kTO atar

I
I
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To obtain an energy equation, we multiply the equation of conservation
of potential vorticity (21) by p¢p/z 2 and then integrate over the cylindrical
shell. Thus

JP?0jirRdrdOdR=

djj z

First consider the spatial derivatives. These may be written

f' ( a -0 8q ft Rdrd~dR
ýaOOr Or -9) z

J 1~ OOr O 0](7(k)2 Oq _ g(?p)2 aq R drd~dR2 a2 Or Or 80 z
r1I0/(~IA\ 0 0(¢)2  R

(9"' ( q)_-0 (9..' q)) -drdOdR (30)

The second term in equation (30) integrates to zero as 0 is a periodic coor-
dinate, while the first term integrates in r to give

JP -a(,0)2 ,RAdodR] .,= Lo [ Ž qRdOdR r2  (31)

But at r, and r2 , radial velocity is zero, so 2 = 0. Therefore, the spatial
derivative (Jacobian) terms in equation (29) make no contribution to the
integral.

Substituting for the potential vorticity, the time derivative terms are

J p•-•r drdOdR=

f ¢ ;X+ ~ o]]024,• z 0 1412pnR0 2 4, rRdr~

j'0 1-a (r ) + Z-0 (N
2 z pR _ r-drd~dR. (32)

G /ra~ Rp OR NZO& z
The first term in equation (32) integrates by parts to

pFor-0 02r R drddR

OrOt 7zr Or at
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I
The boundary terms are zero from equation (28), while tile remaining integral

can be written f

J (,)rydrdOIR (34)

The second term in equation (32) also integrates by parts to give

[1,0 -q-2pR rdrdOt + 1 4 Q 2pRa O 2v' rdrdOdR (35)

f N,4'2p aRat IN 2 Z rIR aRat (5

To evaluate the boundary terms, we write 1
( )V da IV q ayaý(6

OROI -dt OR r -9 Or 3r)-

The spatial derivatives integrate to zero by the same manipulations used in

equations (30) and (31), leaving the bounda:y terms to be

I7P d---V)rdrd0 (37)
JN 2 z dt OR ]=0

The upper limit is zero from equation (23), while from equation (24), the

lower limit becomes

f ¢4 Q2pR N 2 1 ?p rdrdO j ' O9() 2 PR- d-dr = 0, (38) 1
N 2z 2TQ r _F 00 Z z=0

again because 0 is a periodic coordinate. The remaining integral in equation

(35) can be written

PNz O-- 02 9 R dr 4R2N 2 0 04R r2 RdrdOdR (39)

Nz ( OR z

Thus the total energy relation has become

d e( 2+p4 ,2  
__ V =0. (40)

I

I
I
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We may identify these terms as follows. • = -u, so the first term in the
expression is equal to the dominant, zonal, contribution to the kinetic energy.
Using equations (15) and (20), the second term can be written

p dTo (bs) 2, (41)
2 dSo

which is identifiable as the available potential energy. Thus equation (40)
states that the total rate of change of the sum of the kinetic and available
potential energies is zero, or, more simply, that the total energy within the
cylindrical shell is conserved.

4 Derivation of a Rayleigh Stability crite-
rion

We are interested in the linear stability of a basic state of entirely zonal flow
!I(R). Consider a perturbation with streamfunction

V = 4'(r, R) exp[ik(rO - ct)] (42)

We anticipate a complex phase speed under certain conditions, and so write

C = CR + ict (43)

For unstable behaviour, we require cl > 0.
Conservation of potential vorticity can be written

d (q + q,) = 0 (44)

Using the relationships

1 d a 1(9)8 a¢0r--0-"ik, O- '-ikc, •=- r- r O -0 (45)
rO 19dt = R r aO &9r 8r 90) (

we obtain

q' + 9 0. (46)

(u - c) Or
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We now multiply this expression by pi'" and integrate over the volume of
the cylindrical shell:

[,P," (q' + zP' c) r R (47)

The boundary conditions are defined in equations (23), (24) and (25). With
the assumed form of the streamfunction, these are written

1 I I'
v - = ikip' = 0 (48)r 80

at r =r 1 and r =r2,

- U (49)
OR V - c

at R = R0, and _l (50)oav = ' V -( -R (50)
OR 'ff- cM

at R= r (z= 0).
Evaluating the integral using the boundary conditions, and taking the

imaginary part, gives

C ([f lI2 4Q2 Np (UR _ N2 rdrd O dR=

+I IV1 R"-- rd =0 (51)

For an unstable solution, c, 5 0, so that the sum of the integrals must be
zero. Evaluating the limits of the surface integral, we assume p(Ro) = 0, so
the upper boundary term is 0. The remaining expression can be simplified
using the Dirac delta function (Bretherton, 1965) to read

4____ 2rfQ z 0 '49 22pR

(2Q- N )6(R- r -z 2  RpTOR k N-2  UR))

x pr drdOdR = 0 (52)JU - C12
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The terms outside the brackets are non-negative definite. Thus, a necessary
(but not sufficient) condition for instability is that the quantity

_4____R 2r•2 z& (9[4Q2pR
M - (R - - R6(R - - . R ) (53)

change sign within the region of integration. Simple algebraic manipulation
allows us to rewrite this

( r 4Q 2UR\)( ,1 6 (4f22p. (54)
R N2 )2( -) poR N2,uR)

It can be shown by integrating by parts that the 6-function part of equation
(54) exactly balances the singular nature of the -L term at R = r. Fur-
thermore, we note from equation (21) that the formalism we have developed
is not strictly valid at R = r. Based on this rather tenuous logic, we will
assume that the delta function does not cause a change of sign at R = r, and
so will neglect it. This approach will be partially vindicated by its success.

In order to obtain more insight from this relationship, we nondimension-
alise it. All lengths are scaled by RO, the radius of the planet. The scaling
of the base state velocity is defined by equation (9), so we write

_ 2QL
2

U=U & , (55)

where ii is the nondimensional velocity. Dropping the tildes, the simplified
sufficient condition for stability is that

K = r + zR R (56)

is of definite sign. This condition is the deep quasigeostrophic analogue of
the Rayleigh stability criterion. Here

B= (NRo 2
2=Q,-L

is the Burger number for the problem. This can be shown to be 0(1), and
can depend on R if N 2 does.

This can be examined for some interesting special cases.
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1. uR = 0. In this case, K > 0 throughout the volume, so the basic flow
is stable to small perturbations. Thus, solid body rotation is Rayleigh
stable.

2. uR = a negative constant. As both p and (R/z) are decreasing func-
tions of radius, provided that the Burger number (or rather the Brunt-
Vaisala frequency) is constant or an increasing function with radius,
again K > 0 throughout the volume. Hence linear super-rotation is
Rayleigh stable.

3. UR = a positive constant. In this case, the two terms of K are of
different signs, so stability is not guaranteed for all parameter ranges.

5 Numerical investigations

5.1 Nondimensional equations

We examine numerically the stability of various basic states. The equations
which we wish to solve are derived from the heat and vorticity equations
using the perturbation formalism of section 4, with the additional ansatz
that the radial form of the streamfunction is cos/(r - ro), where I is such
that

cosl(r - ro) = 0 at r = ri,r 2. (58)

This satisfies the boundary condition equation (25). Defining a new variable

0! = -iRRp/k (59)

and applying (45), equations (18) and (19) reduce to

1 (UR N2 - - (60)

OR -c 2QpRc

-- pR -r + (1- c) 1 P+ R (61)

Here, i, ¢ and c are considered complex, while all other quantities are real.
Taking the complex conjugate of these two equations demonstrates that if
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c is a valid eigenvalue for the system, so is c*, so complex eigenvalues will
occur in complex conjugate pairs.

We non-dimensionalise these equations, identifying the radial length scale
L - 1/1. The scaling of 0 is determined by equation (24), the boundary
condition at z = 0. This requires

R = ikV'= ik4?/(pR) (62)

so ifI ¢•(63)
then

4/ = 0'ipoRo¢ (64)

Dropping the tildes, the equations are written

S= L UR - ;-- B ,) (65)

I - pR(- (i(u-c)) 1b++ R0. (66)8R Z2

Again,

B= (NRk (67)I (2Q)
is the Burger number, here for a particular wavenumber 1, 0(1). Boundary
conditions (23) and (24) reduce to

R=Ro 0=0 (68)

R=ro =} ¢=pr¢p. (6Q)

I 5.2 Numerical procedure

We adopt the following physical parameters. We treat the Brunt-Vaisala
frequency as a constant within the planet, so that the Burger number is also
constant. We choose as a density profile the solution of the Lane-Emden
equations (Chandrasekhar, 1958) for a polytropic planet with equation of
state p = Kp2, which is

I sin irR (70)I-(0
!



i
242 I

I
This is a smoothly decreasing function which tends to zero at R = 1, and is
considered to be a good first order relation for the outer planets, providing I
a good fit to the observed gravimetric data. Away from the centre of the
planet, this density structure is well approximated by a linear relationship

p =-5(1- R) (71)
4

which will prove useful in analytic calculations.
We integrate this system of equations numerically by a shooting technique

using a 4th order Runge-Kutta method with constant step size. For a given
value of c, we treat the system as an initial value problem defined by equation
(69), and integrate to R = R0 . To determine valid eigenvalues c, we construct
contour plots of 101 at Ro, and look for zeros, which are improved by an
iterative Newton-Raphson method. The solution is then continued in B.

As we would expect from the analysis of the Rayleigh stability criterion of
section 4, we find no unstable solutions to the problem for the special cases I
and 2. Indeed, as a generalisation of case 2, we find no unstable solution for
any monotonically decreasing velocity profile. We concentrate our attention
on case 3. We use a velocity profile

R - r0

This is linear with R, and varies between 0 and 1. For most of our calcula-
tions, we take the value of r0 to be 0.7. This is probably consistent with the
assumption of no phase changes within the cylindrical region for the outer
planets.

Figure 3 shows contour plots of the ¢11 plane for different values of B.
There is little change in behaviour until B > 1 is reached, as shown by the
upper plots. Below this, there are two valid eigenvalues, both on the negative
real axis, and hence both stable. However, at higher Burger numbers, more
valid solutions appear, as shown in the lower left plot, including some with
non-zero imaginary part, as shown in the lower right plot.

Figure 4 shows the values of c, against Burger number for unstable so-
lutions. Several points are worth noting. 'Tnstable solutions appear only for
Burger number greater than about 3, and there is only one unstable solution
for any given Burger number. In order to understand this behaviour, we
examine the phase plane of the real and imaginary components of c for all

i
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Figure 3: Contour plots for 101 for varying Burger number.

Valid eigenvalues are located in contour minima. On axis solutions in the
bottom right plot are probably numerical noise.

IUpper left: B = 0.01
Upper right: B = 1.0

ILower left and right: B = 400
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Growth rate as a function of Burger number - rO=0.7c imag x 10-3
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Figure 4: Unstable modes as a function of Burger number.
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Phase plane for instablity - rO = 0.7
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Figure 5: Phase plane of eigenvalues for all unstable solutions. Lower diagram
is an enlargement of the region near CR = 1.
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I

Burger numbers and all unstable solutions. This is shown in Figure 5. As
Burger number is increased from 1, one of the two solutions on the nega-
tive axis becomes more negative and remains on the axis. The other moves I
through the origin, and then at Burger number a little greater than 3 becomes
unstable and follows the largest curve in the phase plane. When this returns
to the real axis, as Burger number is further increased it stays on the the
real axis with CR increasing. At the value for B at which this mode becomes
stable, a new unstable mode appears, and follows the second largest curve.
Again, as Burger number increases, this returns to the real axis and becomes
stable, when a third unstable mode develops. Thus at higher Burger num-
bers, there are multiple stable solutions on the real axis, and one unstable
solution just off it, as seen in the lower contour plots in Figure 3.

It is instructive to look at the form of the eigenfunctions 0 and 0 for
these different modes, shown in Figure 6. The mode numbers in the figure
refer to the "hump" number on Figure 4. Thus the first unstable mode
is monotonic for both eigenfunctions, while higher orders have increasing
numbers of turning points.

5.3 B=O limit

To aid in understanding the behaviour of the system at low Burger number,
we note that in the limit of B -+ 0, the equations have a closed form analytical
solution. Equation (65) integrates directly to give

V) = A(U - c) (73)

where the amplitude A is arbitrary and undeterminable. Substituting this
in equation (66) and collecting terms gives

_OR _ + U c)U - c), (74)

a closed form solution that can be integrated numerically for any arbitrary
density or velocity profile. We specialise here to the parameters we have
used for our numerical calculation, with the simplified linear density profile
given by equation (71), and obtain a function that can be integrated analyt-
ically. The full solution is somewhat messy, and provides little insight, but
examining the boundary conditions is more helpful.
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Behaviour orfw ror first roir modes
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Figure 6: Eigenfunctions characteristic of different branches of unstable so-
lutions
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Equation (69) requires that V = 0/(pru) at R = ro. To achieve this, we

examine Taylor expansions in z of the two functions about z = 0. These are

-A _ z2 + O(z 4 ) (75)•p = Ac +2ro(1 - ro)

and

ro( + 2rt)- 1)
0/(pro) = -Ac+ Aln(ro) C2 + (r0ro - 1)2

(r3 + 2r(T - 1) 4
+ 80+ rsr( z + O(z 2), (76)

(1 - ro)3  5ro0  r)

where F is the constant of integration. Note that the lowest order terms are
automatically equal, so the matching condition is the requirement that the
O(z) term in the second expression is identically zero. This is also required
for 0 to be analytic at R = r0 . Equation (68) requires that 0 be zero at
R = 1. This produces another quadratic equation in c:

5A +12c2(r~ln(l+zo)_ , 8c (31n(l+zo)ro(rT+2ro-1)+zo(l+ro)(1-4ro))5A 1°+ --To(

+ 3ln(+zo)ro(ro+2)(Tr 2o+2ro_-4)_-zo (32r 3 +19r 2o_8ro +2)) = 0 (77)
+ (1 -To)23 ( 0

where zo = 1 - ro. Eliminating F between equations (76) and (77) yields an
eigenvalue relation, which for ro = 0.7 has solutions

c = -3.667, -0.461. (78)

These are qualitatively the same as for the simulation shown (see Figure 3
for comparison). Much better agreement can be obtained by using a different
constant for the linear density profile, while complete agreement is achieved
when the numerical simulation is run with the exact linear profile used here.

Interestingly, this method also predicts instability for values of ro below
about 0.4, a result confirmed by numerics. This is less physically applicable
than instability previously discussed, as at these depths in the real planets
phase changes will have occurred to invalidate the basic assumptions we have
been using.

Thus, this analytic result gives a good understanding and confirmation
of the behaviour of the system at low Burger number, and in an asymptotic
sense is a good approximation to B -, 1. For insight into the behaviour at
higher B, we must turn to other techniques.
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6 The Rayleigh criterion and the onset of
instability

We wish to see whether the simplified Rayleigh stability criterion (equa-
tion (56)) derived earlier can provide insight as to why the system becomes
unstable. In particular, we might hope to recover a lower bound for B at
which instability can occur. Consider a generalised linear density profile

p ,- (I - R), (79)

with the linear velocity profile (72). The Rayleigh criterion (equation (56))
is then that

=ro z a (R(1-R)(K Z2• R(1 - R) aR ýBz(1 - to))(0

must change sign for some value of R. Assuming constant Burger number,
this is the same as requiring

z2 r02 (81)K'= BKz2 = Bro - (1 - R)(1 - ro) R(1 - ro)

to change sign. It is easy to show that this function is monotonically decreas-
ing with R in the range [ro, I]. We look for the value of B at which K' = 0
at R = ro, z = 0. Hence

Bcrit - (82)
1 - r0

is the minimum value for possible intability. Thus, when r0 = 0.7, Bit -- 31.
This is very close to the critical value found numerically, as can be seen from
Figure 7.

The Rayleigh criterion provides only a necessary condition for instability.
However, in this case the condition seems to be sufficient. This can be
understood from the nature of the integral kernal K. For values of B below
33 this is negative throughout the region. When the sign change occurs, it is
at z = 0, where the kernal is highly singular. Thus a small region of positive
contribution here can provide a very large net positive effect, allowing the
whole integral to be zero.
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Figure 7: Onset of ;nstability

7 Application to the solar system

We have found that baroclinic instability can occur for subrotating basic
velocity states, but that superrotating states are stable. If we differentiate
equation (15) with respect to r, we obtain

,.,Ou O~sdato

Remembering that temperature decreases with planetary radius, this means
that a superrotating state corresponds to greater incident heat at the equator
than the poles, whereas a subrotating state corresponds to the reverse. The
winds of Jupiter and Saturn are dominantly prograde (superrotating), and
there is an excess of heat at the equator, which is consistent with our formu-
lation. Unfortunately, this also precludes the instability we require for heat
transport. Uranus, however, has dominant heat input at the poles, while
Neptune's winds are observed to be retrograde, so the baroclinic instability
we have discovered may be important in these planets. We have also ignored
the possible influence of an inpenetrable core which may provide instability
even for Jupiter and Saturn.
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Future work must also consider the effect of more rapid zonal variations,
as without these influences the growth rate is unbounded with increase in
wavenumber k. However, such considerations are unlikely to affect the exis-
tence of the instability.
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Stochastic forcing of boundary layer turbulence

Petros J. Ioannou

M.I.T

1. Introduction.

Transition to turbulence typically occurs in shear flow experiments at R Z 1000

where R is the flow Reynolds number'. Careful control of the intensity of background

disturbances results in persistence of laminar flow to much higher Reynolds numbers which

for pipe Poiseuille flow 2 can reach as high as R = 105. The dynamics of such small

perturbations as are associated with high R transition can at least initially be described

with accuracy by the Navier-Stokes equations linearized about the background mean flow.

Assuming that the background noise is stochastic it is of interest to address, making use of

linearized perturbation theory, the level of variance sustained in the mean by this stochastic

forcing.

The familiar problem of the damped harmonic oscillator excited by random and un-

correlated impulses exemplifies the physical processes operating in most familiar dynamical

systems. It can be shown that the ensemble average variance of the displacement, X, of

the oscillator is given by

< I X 12 > "- 7r 1 , f 2 , 
1 1

where I E1 2 is the amplitude of the random forcing, w the natural frequency of the oscilla-

tor, and -y the damping coefficient 3 . When w = 0 there is no restoring force and we obtain
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Brownian motion for which there is no stationary state. When -Y = 0 there is no damping

and random driving again leads to nonstationary statistics, while for nonvanishing restor-

ing force and nonvanishing damping the variance reaches a finite statistically stationary

amplitude such that the input of energy from the driving balances the dissipation and a

variance level inversely proportional to the damping coefficient results. This behavior is

characteristic of all dynamical systems with self-adjoint dynamical operators. The total

variance in such systems is the sum of the variance of each of the normal modes taken

separately, the same as if each mode were independently excited by stochastic forcing.

Consider now a fluid with a background flow field having nonvanishing rate of strain

but with sufficient dissipation so that all small perturbations impressed on the flow even-

tually decay. Linearization of this dynamical system about its background flow results in a

non-self-adjoint dynamical operator and an associated set of modes that are not mutually

orthogonal either in the inner product associated with the L2 or the energy norm. This lack

of orthogonality corresponds to the potential for extraction of energy by the perturbations

from the background flow, irrespectively of the existence of exponential instabilities. The

energy balance in such a system is between the stochastic forcing together with the induced

extraction of energy from the background flow, on the one hand, and the dissipation on

the other. Without stochastic forcing the perturbation field would vanish. With stochas-

tic forcing an enhanced level of variance can be maintained by the stochastically induced

transfer of background flow energy to the perturbation field which exceeds that arising

simply by accumulation of energy from the forcing. In this respect stochastically forced
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non-self-adjoint dynamical systems differ fundamentally from the classical stochastically

forced harmonic oscillator.

These considerations led Farrell and Ioannou 4 to investigate the maintained variance

in 2D unbounded constant shear and deformation flows. It was found that the variance in

pure deformation flows increases without bound under stochastic excitation for any value

of the viscosity. In contrast, in shear flow the variance is stationary and is limited to an

increase of a factor of three over that arising from the same forcing of the unshcared fluid.

The importance of treating the stochastic forcing of 3D channel flows was further

motivated by the calculations of Butler and Farrell5 and Farrell and Ioannou6 in which it

was found that the maximal growth of perturbations in 3D channel flows far exceeds the

growth of their 2D counterparts and is simultaneously more persistent. While unbounded

constant shear flow has the convenient property, exploited in the aforementioned works,

of a closed form solution both in 2D and in 3D, this is not true for bounded flows. In this

work a general method is presented which is valid, in principle, for calculating the response

of any bounded flow to stochastic forcing.

2. Stochastic forcing of linear dynamical systems.

Consider the linear autonomous dynamical system

d
"T = At i + .Te,. (2.1)

The linear dynamical operator, A, which controls the deterministic evolution of the system

is in general non-normal (i.e. A'A 54 A.A', where (') denotes the Hermitian transpose).

The stochastic nature of the dynamical system stems from the random nature of the
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forcing, f. This forcing is assumed to be a b-correlated Gaussian white-noise process

with zero mean: < ci > = 0, < f,(t)c(t') > = bjb(f- t') ' , which excites with equal

probability and independently each forcing function, specified by the columns f(U) of the

matrix -Fij. The norm will be assumed to be generated by the inner product defined by

(0,.4-), where MA is a positive definite hermitian operator. We will employ the energy

norm < E > = limt_>• < zi'(t)."ijxj(t)) >, with MA to be determined in sequel, rather

than the L 2 norm for which J4 would be equal to the identity matrix, recognizing that

we want to measure the ensemble average velocity variance which is related by a constant

factor to the energy.

When A is stable (i.e. all the eigenvalues of A have negative real parts), the dynamical

system reaches a statistically steady state, the statistics of which we wish to determine.

The solution of (2.1) for t > 0, with initial condition xo is given by

x = eAt co + g(t - s).F'ds, (2.2)

where g(t - s) = eA(t-). The random response, x, is linearly dependent on E and conse-

quently is also Gaussian distributed. The first moment, given by < x >= e At x, vanishes

for large times because of the assumed stability of A thus making the system independent

of its initial conditions. The total variance is given by:

< Et > = < (MI 112X(t)), (M 11 (•t)), >

= .t•b (f9g'ba@t - S) Mc !;d(t - .s)d) .d (2.3)

= f €(~t. (l)
b b t~aa"

1 Notation: < > denotes ensemble averaging, and * complex conjugation. We will freely

use the summation convention.
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We have defined 8.' f- .'(t-s).k4 g(t-s) ds, and f1 (b) .ab. Recall that f(b) represents |

the a-th coordinate of the b-th forcing function. I
The stability of A ensures the existence of limt->c. 6t = S' and it can be shown,

under this same condition, that 83 satisfies the Liapunov equation:

A'LO + 8 = -M, (2.4) I
which can be solved by standard methods 7. Alternatively, B'3 may be obtained by

direct integration noting that A can be diagonalized by a similarity transformation using

the matrix, '7, of the eigenvectors of A arranged in columns so that A = 'PS?'-1 with

Sij = o()•6ij, where o' is the i-th eigenvalue of A, and Re(or(i)) < 0 by the assumption of

stability of A. Consequently:

s' -9 'PI (Pab,"bcPcd) (25=) - a ,•o O() + 0,(d) •.j (2.5)

Returning to the calculation of variance we first show that < El >, given by (2.3),

does n3t depend on the forcing distribution, assuming only that the forcing is properly

normalized. To this end we call two sets of forcing distributions , ,F 2 equivalent if

there is a non-singular linear transformation T 2 = T-F1 which preserves the M-norm.

Such a transformation can be expressed in the form 7 = /"-1/2U'"1/ 2, where U is a

unitary transformation, and it satisfies: T' = •T, 1,M- 1. Note that F'M.Y = I implies

7F'MA4 = I and consequently two equivalent forcing distributions -Fi, .F2 have the property:

Y.F"i = YF2.' 2 . (2.6)
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I
Using the identity Trace (ASC) = Trace (CAL), it immediately follows from (2.6) that

I two equivalent sets of forcing produce equal variance. Consequently, we are at liberty to

1 select any ."v-normalized forcing F-, in (2.1) so long as it is of full rank.

We select the forcing set, .F, whose columns f render the functional

IYf - f', Mf (2.7)

stationary (note that 8130 is hermitian). These stationary forcing distributions are found

by solving the eigenvalue problem:

mI(Vl/
2 ,6o0Vl/2 ) / fl / 2 f (2.8)

The eigenfunctions k - )-l-/ 2 f' are orthogonal in the inner product associated with the

L 2 norm, while the corresponding fi are orthogonal in the inner product associated with

the energy norm, and can be scaled to be orthonorinal. The non-singularity of A4M-1/2

ensures that the forcing distributions fi, derived from Oi, also form a spanning set and the

normalized f' provide unit forcing of (2.1) if we set Fab = f(b)

I The forcings obtained from solution of the eigenvalue em (2.8) can be ordered

according to their relative contribution to the stochastically maintained variance. In se-

quel we will contrast these ordered forcings with the responses ordered according to their

contribution to the induced variance.
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The x resulting from (2.2) is Gaussian with zero mean. Its full specification is obtained

from the correlation matrix: I
= < (.'4 112X(t)), (.V" 2 X(i))- >

t t j 

/

C()= K4 1/2 jds jds' 9.b(t - s) .F6,,f.(s)C~t ' ) 1/(t)42)

1/2 t(2.9)

V1 / 2  ~1/2
ia s fod5 lab(t - S) -Fbc7.Fec9ede(t - S) kId

or in matrix form

C(t) = ' 1/ 2 &,t 1/2 (2.10)

where

k t = ] 9(t - s) 'Hg'(t - s) ds , (2.11)

and 7- = .F.P'. The correlation matrix depends on the metric M, the dynamical operator

A, and the forcing distribution T. It is clear from (2.6), that equivalent forcings result in I
the same h and therefore in the same correlation matrix.

It can be readily verified from (2.9) that C(0) = 0 and that limt_>oo.C(t) = C' is a

well defined stationary limit, given asymptotic stability of A. The equation governing the

temporal evolution of C(t) follows from differentiation of A:t with respect to time to obtain:

dV = 7-H + .Ak + A:A'. (2.12)
dt

The solution to (2.12) is:

Vt = k 00 - eAt kooeA't (2.13)
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and the asymptotic stationary correlation matrix is obtained from the solution of the

Liapunov equation:

AKAoo + kA7 A' = -R, (2.14)

upon taking the limit of (2.10) which gives C' M= / 2 k- .W41/2. The variance maintained

by the stochastic forcing is then < E > = Trace (C'). As expected, this value of the

variance is the same as that obtained from (2.3) by means of which the principle forcings

were found. This can be seen from the following:

Trace (Y-'L-"F) -F'jb j ds b.(t - s),Aa.GdPd(t - S).Faj

oods .S'bit 1/2 k 1/2
= jds b.(t - de idee(t -

= Trace (11/21 ds g(t - s)7"ig'(t - s) A41/2)

upon identifying the integral with KA. in (2.11).

The correlation matrix is a positive definite Hermitian operator by construction, and

therefore it has positive real eigenvalues associated with mutually orthogonal eigenvectors.

Each eigenvalue equals the variance accounted for by the pattern of its corresponding

eigenvector and the pattern that corresponds to the largest eigenvalue contributes most

to the variance. The decomposition of the correlation matrix into its orthogonal compo-

nents is called the Karhunen-Loeve decomposition 8 (referred to as K-L in sequel). This

decomposition has been widely used in analysis of synoptic meteorological data9 and has

been applied recently in turbulence research' 0 . To determine the K-L decomposition in

the M4-norm we solve the eigenvalue problem:

CoouM() = A(i)u(i). (2.15)
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In the energy norm the K-L functions in (2.15) determine the A--orthogonal set of velocity

correlations; the corresponding strearnfunctions are given by 00) = A4-1/ 2u(). Note that 3
these streamfunctions, unlike the u('), are not in general themselves AM-orthogonal.

We have determined two sets of orthogonal functions: using (2.8) we ordered the

forcing functions according to their contribution to the variance, and using (2.15) we or- I
dered the response functions according to their contribution to the steady state correlation 5
matrix. If the dynamical operator A is self-adjoint in the M-inner product, the two sets

of orthogonal functions reduce to the eigenfunctions of A. This is easily seen in the L2

norm because in that case if A is self adjoint A, 8t, and C(t) commute and therefore they

are simultaneously diagonalized by the same eigenvectors. For a self-adjoint operator the

K-L patterns have special dynamical significance: they correspond to the normal modes of

the dynamical system and also to the forcings that excite the normal modes and produce

the independent modal contributions to the variance. This is not true when A is non-

selfadjoint as is usually the case for fluid dynamical applications. North11 realized that

when the operator A is not self-adjoint the K-L decomposition of the correlation matrix

does not identify the normal modes of A. Identification of the forcings that account for the

variance of the statistical steady state for non-selfadjoint dynamical systems is an impor-

tant theoretical question. We have shown that these forcings can be obtained by solving

the back Liapunov equation (2.4), and we call them the back K-L decomposition. It may

be argued that spanning the forcing functions found from the back K-L decomposition is

at least as necessary in dynamical investigation of the system as spanning the response

functions found from the K-L decomposition, as suggested by Lumley1".
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3. Stochastic forcing of channel flows.

The linearized Navier-Stokes equations governing evolution of disturbances in steady

mean flow with x velocity LJ(y) are:

,a+U - U+y= a P+1AU (3. 1.a)
'at 8) axR

+ [+U V = - op+ 1 Av, (3.1.b)

aa+ W+U -- p+ Aw, (3.1.c)
at axaz R

a a a9O--U ± -ry + -f U' ,0 , (3.1.d)

where (u,v,w) denote perturbation velocities in the x, y, z directions respectively, A

8+~ 82 +_ e enod9ume,2 0 i
+ 80 2 is the Laplacian operator, and R U= L is the Reynolds number, U, is

the maximum velocity in a channel of half width L, and v is the kinematic viscosity. We

impose no slip boundary conditions at y = ±1. Couette flow has mean flow U = y, and

Poiseuille flow has U = 1 - y2 .

It is useful to eliminate u,p,w in favor of the normal velocity v and normal vorticity

w - - w. The reduced equations take the form:

r+ U AV -A Ua = 1 Av (3.2.a)

at ax az (3.2.b)

with equivalent boundary conditions v = o9 = w = 0 at y = ±1.

Consider a single Fourier component:

v = ý exp(ikx + i1z), (3.3.a)

w = ýa exp(ikx + ilz) , (3.3.b)
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physical variables being identified with the real part of these complex forms. The field

equations can be written in the compact form: U

in which the Orr-Sommerfeld operator C, the Squire operator S, and the coupling operator I

C are defined as:

C = A-i(-ikUA + ikUyy + AA/R), (3.5.a)

S = -ikU -A/R (3.5.b)

C = -ZilUY (3.5.c)

with a 2 = k2 + 12, and A = d2 -"2.

We define the perturbation energy density, in the usual manner, as:

E(k,l) - 1 1l dy dfr10 dz (u 2 + + w2) (3.6.a)167r2 1 o 0o

1 1 d--_,d + I (3.6.b)
8 _ d

=- fdy (,'l4 , (3.6.c)8

with E = [ . The energy metric, k4, is given by:

M=[A 0] (3.7)

where I is the identity matrix. In deriving (3.6.b) we made use of:

d
fz LD- k-ý(3.8a)

a2 ( dy

?z = k~v I d(3.8b)
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In deriving (3.6.c) we integrated by parts and made use of the boundary conditions.

Consider now the discrete equivalent of (3.4). The state vector for an N level dis-

cretization is,
V 1

vi

N ,(3.9)

Wi

-CN

and the initial value problem (3.4) assumes the discretized form:

d ýb =AV, ,(3.10)
dt

in which the linear dynamical operator, A, is the discretized form of [C S.j According to

Lax's equivalence theorem, if the discretization is consistent and stable integrations based

on the discretized operator converge to those of the continuous operator12 . In sequel

stability has been tested by doubling the number discretization levels.

The stochastic dynamical system associated with (3.10) is:

d

in which f is a random Gaussian white noise process, and F a forcing distribution initially

assumed to provide unit energy density driving to each of the N functions fi that form the

columns of F. The analysis presented in section 2 applies with the metric M given by (3.7).
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Alternatively, we could have forced, for instance, with unit enstrophy by appropriately

modifying the metric. In the energy metric the maintained variance corresponds to the

ensemble average energy density, < E >, of the statistical steady state. Note that the

operator A is stable, i.e has a spectrum with negative real parts, for all R in the case of

the Couette flow, while for the Poiseuille flow A is stable for R < 5772.22 13.14 We will I
limit our investigation to R < 5000, so that it may be anticipated that both the Couette

and the Poiseuille flow will reach a statistical steady state.

Consider first the Fourier component ,vith k = 1. The ensemble average energy density

as a function of R for a variety of channel flows is shown in Fig. 3.1. First consider the 2D

case with I = 0 and no flow (curve 5), and the 3D case with l = 2 and no flow (curve 3).

Note the linear growth of < E > with R as would be expected for a self-adjoint dynamical

system. The increased variance (nearly double) in the 3D flow as compared to the 2D flow

can be attributed to the larger number of forcing modes in the former. In the case of no

flow A is self-adjoint and consequently the K-L decomposition of the variance to obtain

the response functions yields the same structures as the back K-L decomposition to obtain

che forcing function. The < E > maintained in 2D Couette flow with unit shear,S = 1,

is shown in curve 4, from which it is apparent that the the non-selfadjointness of the

operator leads to increased < E >. Comparison can be made with the perturbation

variance sustained in unbounded 2D Couette flow4 . In the unbounded 2D flow < E > was

found to asymptote as S- > oo to three times the variance at zero shear. In the bounded

2D flow for k = 1 and R = 750 the variance reaches an asymptotic value nearly twice that

sustained when there is no flow which is consistent with the previous result. The sustained
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variance when the full 3D effects are allowed is shown for the Couette and the Poiseuille

flow as a function of R in Fig. 3.1 curves (1) and (2) respectively. Note the remarkable

increase of variance with Reynolds number (< E >; R 311

We have obtained the ensemble average energy density under the assumption that

each degree of freedom receives unit input of forcing. As the number of degrees of freedom

increase the total variance converges, because the principal contribution to the variance

is made by a few structures. If we want to address the question of amplification of back-

ground disturbances we have of necessity to make assumptions about the spectral energy

distribution of the background noise. The simpiest calculation, which also turns out to be

also indicative, is to assume that the noise energy is distributed equally in R'1 2 modes.

Then the noise amplification is the total variance, shown in Fig. 3.1, divided by R1 /2. The

resulting amplification is shown in Fig. 3.2. Observe that the amplification is larger for

Couette flow, reaching a 100 fold at R -_ 750, while for Poiseuille flow this level is reached

only at R ; 1300. Also note the small amplification of the 2D flow. To relate the level of

maintained variance to the amplification of background noise needed to instigate transition

to turbulence, recall that the fluctuation energy which is typical of a turbulent state is ap-

proximately 1% of the energy of the mean flow" 5 . Consequently, background fluctuations

of 1% rms in the velocity fie1'_ require a 100 fold amplification for the variance of the flow

to attain an amplitude characteristic of turbulence. If the amplification for the k = 1, 1 = 2

component is typical, our analysis predicts that transition for the 3D Couette occurs at

R - 750 and for the 3D Poiseuille at R - 1300, while for the 2D Couette transition does

not occur. These transition values are remarkably consistent with observations.
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5. Conclusions

We have shown that stochastic excitation of viscous shear flow produces high levels

of variance if the Reynolds number of the flow is sufficiently large. This variance arises

primarily from excitation of a restricted subset of favorably configured forcing functions

which can be found as the solutions of a Liapunov equation. In a similar manner, the

response functions that form the primary structures of the maintained variance can be

identified with solutions of a related Liapunov equation. The primary forcing functions

determine a low dimensional subspace which must be spanned by a basis for the stochastic

dynamics while the primary response functions similarly determine a subspace which must

also be spanned by the dynamical basis. The distinction between the forcing and response

functions is a consequence of the non-selfadjointness of the linear dynamical operator and

no such distinction arises in unsheared flow, simple convection, or other dynamical systems

characterized by self-adjoint operators.

Observations of transition from laminar to turbulent flow have consistently shown,

since the experiments of Reynolds1 6, that transition is highly sensitive to background

disturbances. The reason for this sensitivity can be understood from this work to arise

from the existence of a subset of forcings which produce high levels of variance even though

these canonical problems typically are asymptotically stable at the Reynolds numbers for

which transition is found to occur. Unless the background disturbance field is contrived to

have a null projection on the primary forcing functions these will amplify to produce the

level of variance observed in turbulent flows when forcing typical of ambient background

variance in experiments is imposed.
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The fact that stochastic forcing has been shown to produce high levels of variance

and the fact that transition is observed to depend on free stream turbulence levels taken

together lead to the theoretical explanation for transition advanced in this work.
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IA Nigltside Atmosphere of lo?

IRayVionl 1. Lellea. .JIr.

Se veral models of the atnimnoPhcrt of lo har, indicaIt d that thbrc mtay ex•'ist a high ye -
locity/s upe rsonic flow of maitc rio al u'aq froni thf stubsolar point towairds the nightside of

lo (Ingersoll et al., 1985; Ingersoll, 1989; Moroeno c a!., 1990). De'spite this large mass
flux to the nightside of the moon. the rapid condeinsation of sulfur dioxide to the surface

Sin these cold regions probablyt would result in a ntgligibh 802 atm osphere on the darkside
of Io. Howemer. photodissocialion of thc sulfur dioxide" into other chemical constituents
(sulfur. oxygen, sulfur mnonox'idti) on the daysidte would restlt in a flux of non -condensing

constituents to the nightside which could yield a significant atmosphere. T'his study numer-

ically modehs such a process in a sublimation-driven atmosphere, determining the chemical
composition the nightside atmosphere over a varicty of siuhsolar and darkside temperatures.

The results indicate that a non-1-02 almosphere on the nightside may reach pressures on
the order of 10- bar, significantly above that needed to explain the Pioneer 10 occulta-
tion data. Therefore, non-sulfur dioxide constituents of the atmosphere may provide a

explanation for er'cess pressure detected b.y Pionner 10 at the Ionian terminator.

I Overview

The To-Jupiter system is one of the most active and complicated in the solar system.

On the moon's surface volcanic vents driven by tidal forces spew gas hundreds of kilometers
above the frost-covered ground. Surrounding the orbit of lo, a large torus consisting
of neutral and ionized sulfur and oxygen is continuously maintained by material from

the moon. The ions of the torus are swept, up in the strong, rotating magnetic field of
Jupiter, striking lo at relative velocities greater than 50 km/s. These collisions create a
self-supplying ii 1echanism for the torus, sputtering particles into the lonian corona.

In the midst of this complex system, there likely exists a tenuous, yet. relatively sub-
stantial atmosphere, covering a portion of the moon in sulfur dioxide gas sublimated from
the surface frost or outgassed from the vents. Since the detection of an ionosphere during

the Pioneer 10 occultations in 1975, there have been a series of observational and com-
putational efforts that have begun to define the nature of this atmosphere; however, the
atmosphere is still not well understood, in part. because it. has proven difficult, to observe

directly. Yet, numerous observations of the To-Juptier system do provide guidelines to
understanding the movement, distribution, and (opnipsition of the lonian atmosphere.

I While observations of post-eclipse brightemng in• , suiggesi-d that lo might possess
an atmosphere, the Pioneer 10 occmltalions prvidleI lhe first strong indication that an
atmosphere of some sort existed on To (Kilore ( t al.. 19751). The occultation geometry (fig
1.1) allowed electron density profiles of aln iomisphere at 81 .5 and 9-1.4 degrees colatitude
(relative to 1he subsolar point.) to be measured. Based (lm I he pr,)files, the surface pressure
of the atnmosphere can be inferred to be on the ,em ,,f (,1 510 "' bars in the vicinity of the

terminator (90 degrees colatittude).
Another important observation was the deteet ioti of sulfur dioxide surface frost on lo.I The reflectance spectrum of To shows a strong 41.05 pllr absorpttion band that, corresponds to
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a sulfur dioxide feature which best. fits surface fro•st as opposed to at nioslheric gas ( Fanale
ct al., 1979; Howell ct al., 1984). The depth of the absorption band implies tlhat arouind
80% of the surface is covered with optically thick frost, providing a. potential source for a,
sulfur dioxide atmosphere.

The direct detection of sulfur dioxide gas in the atmosphere was made 1y the Voyager
IRIS observation of a 7.4 pim absorption in the thermal radiation spectruin of the hot spot
Loki. The depth of this absoption indicates that. the surface pressure of the gas was about
10-7 bars, consistent with the vapor pressure of sulfur dioxide at. 130 K which would be a
typical frost temperature at the time of this observation. Other observations, notably the
disk-averaged IUE spectrum from 0.20-0.32 pim (Butterworth el al., 1980) imiply subsolar
frost temperatures in the vicinity of 125 K, but. even at these temperatures the vapor
equilibrium of SO 2 would yield a substantial atmosphere.

A ready interpetation of this collection of observations is that. Lo possesses a locally-
buffered sulfur dioxide atmosphere that reaches significant pressures on the warmer dayside
of the moon. However, the vapor pressure of S02 for surface frost. temperatures that. call
be reasonably expected near the terminator is considerably less than the pressures derived
from the Pioneer 10 occultation. For example, at 105 K the vapor pressure of sulfur dioxide
is only 3x10- 1 1 bar. Therefore, while this simple model seems to be a good starting point,
the actual atmosphere must involve some other physical mechanisms.

Two possible mechanisms that have been suggested are local hot spot activity and
atmospheric constituents other than sulfur dioxide. The first approach explains the Pionner
10 occultation as having looked through an atmospheric 'bubble' resulting from volcanic
venting in the immediate vicinity. The second method relies on the atmosphere of lo being
dominated by a gas with a higher vapor pressure than sulfur dioxide (such as 02) in the
region about the terminator. It is the feasability of this second muechanisin that is discussed
in this paper.

II Dayside Atmosphere

The general form of a sulfur dioxide atmosphere in approximate vapor equilibrium with
a frost surface is shown in fig. 2.1. The atmosphere is thickest. (surface pressure of roughly
10-' to 10-8 bars) in the vicinity of the subsolar point. Tihe surface pressure decreases
towards the terminator until the nightside, where the atmosphere of SO 2 is exospheric in
nature. Ingersoll et al. (1985, hereafter referred to as ISS85) demonstrated that these
large pressure gradients would induce supersonic winds flowing outward from the subsolar
region towards the terminator. However, local buffering rapidly absorbs excess outflowing
material, such that the surface pressure is always wvithin a few percent. of vapor pressure
and therefore cannot account for the higher pressure values at the terminator given by the
Pionner 10 observations

While the pure sulfur dioxide atmosphere models result in exospheric surface pres-
sures at tile terminator, photodissociation of S(02 coultd produce significant quanities of
non-condensing gases (notably 0, 02, and SO). yieldinig a substantial, non-sulfur dioxide
atmosphere at. the terminator and on the nightside of the moon. A schematic of such
an atmospheric model is shown in figure 2.2. In the vicinity of the subsolar point, the
atmosphere is predominantly sulfur dioxide, with the photodissociaton of S02 dominating
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the chemistry. Gradually, the condensing of sulfur dioxide onto the surface reduces its
partial pressure to levels comparable and then possibly much below that of the other con-
situent. gases. The cheinistry would likewise change, with different reactions and possibly
the condensation of sulfur governing the chemical composition.

2.1 Methodology

In order to more readily model such an atmosphere, certain simplifications are made
to the physical system. First, the surface of lo is treated as uniformly covered with SO 2

frost whose temperature is governed by thermal equilibrium with incoming radiation. A
correlative assumption is that the atmosphere is treated as optically thin with regard to
photodisocciationl. Based on the results of ISS85, frictional interaction with the surface is
treated as negligible. A final simplification is to ignore the rotation of the moon.

With these modifications, the atmosphere can be treated as symmetric about the
subsolar-antisolar axis. To reduce the problem to one-dimension, the atmosphere will
be treated as a series of hydrostatic, vertically adiabatic columns of ideal gas with a
constant horizontal velocity with repsect to altitude. As demonstrated in ISS85, with
these assumptions the equations of fluid motion are vertically integrable, yielding three
equations that govern the variation of pressure, temperature, and horizontal velocity with
repsect to co-latitude. The resulting equations (from ISS85) are:

1 dp 21

rsin (p-zsin0) = E (2.1)

1 d p 2  _ 1 d
r- (v sin 0 ) - - (13CpTp) + r(2.2)

1 d p 2

r si o( gv( + ±C 1T)) Q (2.3)

where p, v, and T stand for atmospheric pressure, velocity, and temperature at the surface
(distinct from the surface frost temperature), 0 is colatitude measured from the subsolar
point, 3 is a parameter defined by R/(R + Cp) (R is the ideal gas constant), and E, r, and
Q represent the flux of mass, momentum, and energy from external sources respectively.

For this model, the only external mass flux considered is the sublimation/condensation
of material with the surface. This flux is defined by:

E 6= r :2lrRTf: (p. - p) (2.4)

with o, the sticking coefficient, treated as unity for sulfur dioxide. The vapor pressure of
the surface frost (p,,) is a function of the frost temperature (Tf) (Wagman, 1979):

p,. = L.516xI013 (pa)C.rp( .1510(K)/Tf) (2.5)

and frost, temperature is determined from:

T- (Tss - Tas)cos 4 P + Tas (2.6)
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with subsolar (Tss) and nightside (Tas) teniperat tire as ,nodel parameters.
With regard to chemistry, the flux of the individual chemfical constituents, ill tertils

of column densities (N), is governed by:

1 di
I d-(Nt',sin 0) L(,a -L,) (2.7)

r sill 9 dO

where x represents S, 0, 02, and SO. Production and loss of the constituents (lue to

chemical reactions, photodissociation, and condensation onto the surface are represented
by P, and L,. In regions where sulfur dioxide is not treated as donminant, its colun in
density is found from:

P N, - N, - N,2 - Nso = No 2  (2.8)
nflat,gg

These five chemical flux equations in conjuction with the three flow equations define the
fluid motions in the atmospheric model.

The important photodissociation and chemical reactions for this atmosphere are listed
in Table 2.1. The various dissociation (J) and reaction (k') rates are from Summers (1985),
which studied the potential vertical composition of a static dayside atmosphere. In this
study, the chemistry was based on local number density, so it is necessary to convert the
given reaction coefficients to a form applicable to column densities. Assuming that the
atmosphere is optically thin, adiabatic, and well-mixed (such that the mixing ratios of
the constituents are constant with respect to altitude), the reaction equations may be
integrated over a column to yield the following form:

1V = kNiN2 ... N,4,+ 1 (2.9a)

whe-re N represents the column densities of the various reactants and catalysts. The
relation between the number density (k') and column density (k) coefficients is:

1 _ RT

k = k'( ' )( 1-) w'here - - , H = (2.9b)

for an (n+l)-body reaction. This conversion treats the k's as constant with respect. to the
integration in altitude. In this study, the mass-average temperature of the column was used
for the temperature dependence in the k' terms (but not in the conversion calculation itself,
which is based on surface temperature). The photo(iss(ciat ion coefficients are not modified
by the integration process but for this study (id decrease as csO (ltue to the spherical
geometry of the model. By combining these l)hotodiss(,ciation and reaction equations, the
formulas for P•, and L. are constructed, forming the right-hand side of the chemical flux
equations.

To solve the model equations, different approaches are used depending on whether
sulfur dioxide is or is not the dominant constituent. of the atmosphere. In regions where
S02 is dominant, the flow equations have an approximate analytical solution developed by
Ingersoll (1989). By setting the atmospheric surface pressure equal to the vapor pressure
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of the frost, the flow equations can be solved to give the following equations for velocity
and surface temperature:

/2/3('pTo p (2.10). p- -p)

t2

T = L ?, 2 (2.11)
2Cp

In the chemistry equations, the pressure and column densities of sulfur dioxide are consid-
ered equal to the total atmospheric pressure and column density respectively. The column
densities of the remaining constituents are found by solving the flux equations for each
constituent numerically using a fourth-order Runge-Kutta scheme.

When sulfur dioxide is not dominant it is necessary to solve both the flow and the
flux equations numerically. As detailed in ISS85, equation 2.2 can be written as:

1 d P 2  1 I p )sn0r sin 0 -(9 r t3,T) sinO) 13C Tp + r (2.2a)

When written in finite-difference form, the three conservation equations have the form:

[p" .k+I [p'],k + ('I = 1 (2.12)

[p(' 2 + ±(g'pT)]k+1  [p(l' 2 + !(,pT]k + G2 = 92 (2.13)

1,2 ,•2

[pv(-- ± pT)Ik+, [pi(-- + C(T)]jk + G3 = 93 (2.14)

where GI, G 2 , and G3 are functions of the right-hand sides of equations 2.1, 2.2a, and 2.3
such as those used in Runge-Kutta schemes, k indicates the values at a given value of theta,
and k+ 1 indicates the values at 0 + AO. Therefore, the flux equations are solved by applying
the fourth-order Runge-Kutta scheme to these equations and thereby deriving values for

91, 92, and 93- Equations 2.12-2.14 are then solved algebraically to yield new values for p,
v, and T as necessary. Simultaneously, the constituent flux equations are solved as in the
sulfur dioxide dominant region, with the column density of S0 2 determined from equation
2.8. Additionally, 'constants' that are dependent on atmospheric chemical composition
(such as Cp) are updated as the composition changes in this numerical approach.

As demonstrated in ISS85, eliminating p and T from equations 2.12-2.14 results in a
quadratic equation in velocity, which leaves the following solution for v:

9g2 ± V/gý - 2 3(2 - 3 ),g3 (2.15)
gi(2 - 3)

This equation defines the supersonic and subsonic regimes, with the negative radical so-
lution for velocity corresponding to the subsonic case and the positive solution to the
supersonic one.

The boundary between the sulfur-dioxide dominant and mixed composition regimes
is chosen to be the colatitude where sublimation ends and condensation begins as derived
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from the approximate analytical solution. This boundary is convenient for several reasons,
foremost being that the flow is always supersonic beyond this point, eliminating the need
to make a numerical extrapolation across the mnach one boundary. Another advantage is

that where E=0, the vapor pressure does equal the atmospheric surface pressure, allowing
a smoother transition between the two domains. Finally, as the results show, this point is
well within the region were sulfur dioxide dominates the atmosphere.

Therefore, the numerical model first calculates the atmospheric pressure, velocity,
temperature, and composition from the subsolar point to the E=0 boundary using the

sulfur dioxide dominant approach, and then continues to terminator using the second
method. At the subsolar point, the initial values for the flow variables are the local vapor
pressure, local frost temperature, and zero velocity. Initial column densities of the non-
sulfur dioxide constituents are derived by approximately balancing equation 2.7, with the

outflow velocity determined from a Taylor expansion about the subsolar point. Setting the
change in the number density of the given constituent (x) to zero from 9 = 0 to 9 = AO,
the initial concentrations may be found from:

c,,oNo 2,o2-[ o- + LZo = Pio (2.16)

where c is the concentration and the zero subscript indicates the given quantity evaluated

at 0 = 0. The velocity derivative is determined from the analytic solution (eqn. 2.10):

at 20CpPTO),B(Tss - Ta~s)157-1o (3•-13 ) 8T 2 (2.17)

where B=4510 K (from eqn. 2.5). The values of -r and Q are taken from IN89:

E>0: r=0, Q=CpTfE
v2 ~(2.18) -

E<0: r=vE, Q =(2 + CpT)E (

These values are already incorporated into equations 2.10-2.11, and so are only explicitly

needed in the non-sulfur dioxide dominant region.
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2.2 Results

In orrder to account for a range of reasonable suibsolar and nightside teinperat ures,
results from several atmnosp0heric models are presented. The range of temperature values
studied varies from 120-130 K for Tss, and W0-80 K for Tas. For all cases studied, the
assumption of SO 2 dominance in the subliniating region proved valid, with the suni of the
partial pressures of S, 0, 02, and SO consistently less t han 3% of the total pressure at t lie
E---0 boundary.

In general, all cases result in atmospheres that roughly correspond to the model of
figure 2.2. As illustrated in figure 2.3a, the flow variables follow expected trends, with
the temperature and pressure decreasing and velocity increasing with increasing subsolar
colatitude. These variations in the flow variables are nearly indistinguishable from the pure
sulfur dioxide models (see ISS85) until beyond 70 degrees colatitude. At this point, sulfur
dioxide begins to lose dominance (fig. 2.3b), with sulfur monoxide and atomic oxygen
becoming the important atmospheric constituen t. Thus, the overall atmospheric pressure
does not collapse to exospheric values, as iii the case of the pure S02 atmosphere, but.
rather levels off at about 4x10-1  bars. Therefore, while the region in which the non-
sulfur dioxide constituents are significant is relatively small, the model indicates that they
will dominate in the vicinity of the terminator with total pressures comparable to that
observed by Pioneer 10.

However, the important chemistry actually occurs in the region about the subsolar
point, as is illustrated in figure 2.4. This plot of tile chemical mass flux (essentially the left.-
hand side of equation 2.7) shows that the production of non-SO 2 constituents is primarily
through the photodissociation of sulfur dioxide in the thicker region of the atmosphere.
InI fact, except for tile minor constituent of molecular oxygen (02), the magnitude and
mixing ratios of the non-sulfur dioxide atmosphere are essentially established by a short
distance into tile condensing region. Physically, this is the result of less photodissociation
due to decreasing sulfur dioxide and of higher flow velocities which reduce the effective
time in which the chemical reactions occur relative to horizontal distance as the terminator
approaches. Therefore, the dayside models indicate that the non-sulfur dioxide atmosphere
is formed primarily by photodissociation within 45 degrees of the subsolar point, beyond
which it is relatively constant except. for geometric expansion. The eventual dominance of
SO and 0 near the terminator is not a result of local chemistry, but the rapid condensing
of sulfur dioxide onto the surface revealing a previously formed, non-SO 2 atiilosphere.

Qualtitatively, the other four cases presented are similar to case 1: the non-sulfur diox-
ide atmosphere is the result of photodissociation about the subsolar point and becomes
dominant near the terminator as the sulfur dioxide condenses out to very low surface pres-
sures (fig. 2.5-2.8). In general, the variation of subsolar temperature changes the overall
pressure of the atmosphere (cases 2. 5), decreasing from 4x10-1 0 bars at the terminator
for Tss = 130 K to 2x10- 11 bars for Tss = 120 K. The primary effect of decreasing the
nightside temperature (cases 3. 4) is to increase the angular size of the region where sulfur
dioxide is the dominant coastituen , of the at iiospliere. II the end, the models are really
more similar than different -the atnospheric pressure al the terminator is 0.2 - 0.4% of the
subsolar pressure and the mixing ratios of 0, SO, and S aie likewise relatively invariant
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for all the cases studied-with the most important parameter effect being the reduction of
overall pressure with lower subsolar temperatures.

III Nightside Atmosphere

The results of the dayside model show that, a substantial flux of sulfur, oxygen, and
sulfur monoxide could flow across the terminator to the iightside of the planet. While this
material would mostly be reincorporated into tlie surface fr )st as sulfur and sulfur dioxide,
this process is limited to the rate at which the oxygen is recombined into S0 2 , which is
relatively slow at the lowe: nightside temperatures. The implication is that the no10-SO 2

flux could supply a significant darkside atmosphere. II
3.1 Methodology

A- suggested by ISS85, this nightside atmosphere would probably be relatively stag-
nant with a near-uniform temperature with respect. to latitude. The drastic drop in velo, t.v
from dayside to nightside would be in large part due to a hydraulic jump (or low teii,.
ature shock) that would occur when the supersonic flow runs against, a near-st",
atmosphere. At this jump, the flow would abruptly move from the supersonic to the- ,tm-
sonic regime, with a correlative increase in pressure and temperature. A schematic of a
simple model of such a nightside atmosphere is illustrated in fig. 3.1, in which the dark
side atmosphere is treated as having a uniform surface temperature and pressure with no
velocity field. The jump location is determined by where the backside pressure equals the
post-jump (subsonic) pressure of the dayside flow.

Given this atmospheric model, the nightside atmosphere does not require solving the
flow equations once a temperature is selected. Rather, the problem is to solve modified
versions of the chemistry equations such that the influx of material at the shock is balanced
by an outflux of material in the form of condensing sulfur dioxide. Assuming that excess
sulfur dioxide condenses instantaneously, the chemistry equations take the form:

F. + Pý - LX = 0 (3.1)

where P, and L7 have the same form as before without the photodissociation terms (no
sunlight on the nightside) for a given constituent (S, 0, 02, SO). Fý is the external flux
term for the given constituent and is defined by:

F, = (Nv)j,,,p sin Ojump(3.2)R 1 1, 1 4• cos i,,, I

noting that N, and v should be post-jummp values. A similar equation also exists for SO2
which technically gives five algebraic equations that can be solved for the nightside columnI
densities of each consituent. However, only three of the equations are independent as the
system is constrained by stochiometry, reqluiring that number of sulfur atoms and oxygen

atoms be conserved:
N.qo2 = N 8 + NiVo (3.3a)

2Nao2 = Noo + No + 2No2 (3.3b)
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Considering sulfur dioxide to be in vapor pressure equilibrium with the surface provides a
fourth equation. The fifth equation comes from the fact that SO 2 acts as the source/sink
for the other constituents. Therefore, the ratio of two oxygen atonms to each sulfur atom
niust be maintained in the 11O01-S0 2 atmosphere, yielding:

N0 - No = 2(N, - N,,) (3.4)

closing the algebraic system. Since the vapor equilibrium equation is independent of the
other constituent concentrations, the problem is actually to find the nightside colunin
densities of S, 0, 02, and SO by solving the four remaining equations.

The hydraulic jump values for the dayside atmosphere are found by taking the values
of the flow variables at a given colatitude and solving for the negative branch of equation
2.15. Since the jump is relatively cold, it is reasonable to assume that there is no chemistry
in the shock so that the mixing ratios of the constituents remain constant. Since for a given
dayside atmosphere the flux is solely a function of colatitude, the iterative problem is to
find the Ojump that yields a post-jump pressure equal to that of the nightside atmosphere.

3.2 Results

Nightside atmospheres were calculated for each of the dayside cases at several nightside
atmospheric temperatures. The temperatures chosen were bounded on the low end by the
value of the antisolar frost temperature and at the high end by when sulfur became a major
constituent of the atmosphere. High sulfur atmospheres cannot be realistically modeled
by the given approach since significant amounts of sulfur would be expected to condense
out of the atmosphere rapidly at the low frost temperatures of the nightside, an effect not
accounted for in this model.

Figures 3.2 and 3.3 show the results for case 1 (Tss=130K, Tas=50K). The first, fig-
ure illustrates the partial pressures of the various constituents at various nightside surface
temperatures, noting both the temperature and the colatitude of the jump for each case.
The second figure gives the actual total pressure jumps as a function of theta for each
temperature case. A notable feature of the jump region is that the location of the jump
(and therefore, the total pressure of the nightside atmosphere) is relatively insensitive to
the nightside temperature. However, the chemical reaction rates are temperature sensi-
tive. Therefore, the nightside temperature does play a significant role in determining the
chemical composition of the nightside atmosphere, with the sulfur and monatomic oxygen
concentration increasing and the diatomic oxygen concentration decreasing with increasing
temperature. Overall, the darkside atmosphere is considerable, with surface pressures on
the order of a hundred times larger than the terminator pressure of the dayside model and
around 45% of the subsolar pressure.

The four other cases evidence the same trends shown in the case 1 models with re-
gard to nightside temperature (fig. 3.4-3.7). The colder atmospheres are primarily sulfur
monoxide, with some diatomic and monatomic oxygen, and the warmer ones consist. of
sulfur, monoatomic oxygen, and sulfur monoxide. In all cases variations in the nightside
atmospheric temperature did not cause large variations in the backside pressure or the
jump location, nor did changes in the nightside frost temperature have much effect on the
overall nature of the atmosphere except for minor changes in jump location. Decreases in
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subsolar temperature (lid lower the overall pressure of the nightside atmosphere (down to
about 6.5x10-9 bars in case 2) as well as shifting the junmp location closer to the subsolar
point to where the flow would never become supersonic in the lower subsolar temperature
cases. Yet, in all cases the terminator pressure is well above that. needed to produce the
Pioneer 10 data, implying that a non-sulfir dioxide atmosphere is a possible explanation
of these observations. I
3.3 Inprovements to the Atmospheric Model

However, the zero-order nightside model has several problems which need to be ad- I
dressed, primarily as a result of these 'nightside' atmospheres extending well onto the
dayside. A model more consistent with an actual atmosphere (fig. 3.8) would treat three
distinct regions: an accelerating dayside regime, a decelerating, post-jump dayside regime,
and a static, nightside atmosphere. The post-jump dayside region would be modeled in
the same manner as the supersonic region except that the subsonic solution to equation
2.15 would be applied. The nightside would be the same as before, except, that its domain
would be limited to just the dark hemisphere. The model would be solved iteratively
by shifting the jump location until the pressures of the post-jump dayside and nightside
regions matched at the terminator.

A second correction that must be made to the model is a more realistic treatment, of
sulfuir. While it is reasonable to expect the oxygen and sulfur monoxi&, gas not, to condense
in this temperature and pressure regime, the vapor pressure of sulfuir is probably less than
that of sulfur dioxide and is likely to have considerable condensation rates. This rate will
vary between a slow, diffusion dependent. process when sulfur is a minor constituent to the
faster, pure condensation of gas if sulfur becomes a dominant component of the atmosphere.
This latter regime can be treated in the same manner as sulfur dioxide condensation (eqn.
2.8), but the former situation is a far more complex problem which has not been well-
studied for the gases concerned. However, the known data as well as kinetic theory of
gases may provide a reasonable approach to this regime as well.

With these modifications, a first-order model would reasonably be able to look at. the
possible nature of a sulfur dioxide sublimation-driven atmosphere on Io, withini tile context
of a one-dimensional system. Further investigations could include the effect of different.
chemical reaction rates (notably those of Kumar (1982)), more complete interaction with
the surface (catalytic reactions and conductive heat fluxes), and interaction with the torus
(mass and plasma flux).

... ...... ....... _ ------ -__ ----
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I
IV Conclusions

Tile models presented indicate that the photodissociation of sulfur dioxide in the re-
gion near the subsolar point could lead to a significant, non-SO 2 atmosphere both on
the lmightside anld ill the vicinity of the terminator. The surface pressure of this night-

de at• nosphere i)rimarily depen(dent on the pressure of the sulfur dioxide atmosphere
at the subsolar point, while the chemical composition of the nightside atmosphere varies
with the uightside atniosphieric temiperature. At cooler temperatures (60 K) the nightside
atmosphere is predolinaitly sulfur monoxide and diatomic oxygen, while at warmer teni-
peratures ( 100 K) it. is a mixture of sulfur, monoatoinic oxygen, and sulfur monoxide. In
all cases the pressure at the terminator is at least sufficient to support the electron density
profiles of the Pioneer 10 occultation.

However, while these results show the qualitative possiblities of a non-sulfur dioxide
atmosphere, improvements must be made to the post-jump/ nightside model to increase
the quantitative accuracy. The first is that the post-jump region on the dayside of the
moon needs to be approached in the same manner as the rest of the dayside, assuming a
subsonic solution. The second is to include the deposition of sulfur onto the surface in some
reasonable manner, as this would probably significantly reduce the nightside pressures.
Yet, even with these modifications it is expected that a non-sulfur dioxide atmosphere in
the vicinity of the terminator can be found with sufficiently high pressures to support the
Pioneer 10 observations.
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Photodissociation:

0 2 + hv ->0 + 0 J1= 9.le-8
SO + hv-> S + 0 J2=.le-5
S0 2 + hv -> SO + 0 J3=2.8e-6
SO 2 +hv -> S + 02 J4=1.0e-6

Two-Body Reactions:

S + 02 -> SO + 0 k6 =2.3e-18
SO + 02 -> SO 2 + 0 k7'=2.4e-19 exp(-2370/T)
SO + SO -> SO- + S kg'=5.8e-18 exp (-1760/T)

Three-Body Reactions:

0 + 0 + M -> 02 + M k13'=8.6e-40/(T*T)
SO + 0 + M -> SO2 + M k16'=6.0e-43

Table 2.1: Chemistry Coefficients (from Summers, 1985)
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Figure 2.3a: Flow Variables, Case 1 (Tss = 130 K, Tas = 50 K)
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('aue 2 ( =120K. TazN 50 K) Figure 2.5b: Partial Pressures, Case 2
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Figure 2.7a: Flow Vairiables
('ase 4 (Tss =130 K, Tas =65 K) Figure 2.7b: P'arti~al Pressures, ('ase 4
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Figure 3.2: Nightside Atmosphere
Case 1 (Tss = 130 K, Tas = 50K)

5.00 1i03  1 1 1 '

4.00 10-3~~~7 S ',/.'/.. ....,,

zr
S2.00 103 D pS(Pa

i~~oo~ ~ S(Pa)

0.00 100

60 80 90 100
46.4 47.0 48.7 51.0

T Night (K) and Theta of Jump (deg)
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Figure 3.4: Nightside Atmosphere
Case 2 i'lss 120 K. las = 50K) Figure 3.6: Nightside Atmosphere
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Dynamical Aspects of Jovian Vortex
Structure.

Douglas Parker

May 10, 1993

1 Abstract.

Recent data of Jupiter's cloud-top winds have given much insight into the
structure of the zonal jets and persistent eddies, in particular the Great
Red Spot (GRS) and White Ovals. It is here attempted to provide physical
insights into the details of the vortex structures, by modelling with a 1- layer
quasigeostrophic system. Idealised vortices of piecewise constant potential
vorticity (pv) anomalies reveal how the shape and pv distribution of the
vortex is determined by the nature of the shear flow within which it resides;
this work follows that of Yano and Flierl (1992). Similar models of 'modon'
formulation, an approximation that appears to be well suited to these Jovian
systems, are constructed and exhibit a much greater degree of boundary
'stiffness' in the presence of mean-flow shear than the piecewise constant
cases.

Speculation is also made as to the implications of the non-trivial structure
in these large vortices, especially the possibility of geostrophically forced
vertical motion and 'moist' convective processes.

2 Introduction.

Recent photographs of the cloud-tops of Jupiter taken by the Voyager II
spacecraft have provided data of unprecedented accuracy. Various theories
for the planetary dynamics have been inferred from these data; in particular
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Dowling and Ingersoll (1989) (D189) have deduced streamfunction profiles,
pv profiles and equivalent bottom topography for the zonal flows and some
of the persistent vortices on Jupiter. Figure 1 illustrates these deductions.
The strongly anticyclonic GRS has a maximum of pv (negative in south-
ern hemisphere) to the edge of the inner, less active layer (this peak would
qualitatively occur as the result of taking the Laplacian of a Gaussian stream-
function to obtain relative vorticity). The anticyclonic shear of the zonal flow
is shown; the inferred deep winds are of similar form but of slightly different
phase and different amplitude. It is interesting to note that the less active
centre of the spot appears to be shifted poleward within its envelope of more
rapid flow. Other observations are that the GRS is expected to weaken with
height due to its temperature profile (warm core system) and oscillates in lat-
itude and longitude with a period of roughly 90 days. The external velocity
profile appears to be relatively quiescent.

Figure 2 shows DI's graph of pv versus Bernoulli function, B, in the
region of the GRS. Since B is similar to a strearnfunction for the flow, a
linear approximation to the relationship between pv and strearnfunction, as
used in the formulation of modons (Flierl et al, 1980) immediately seems
reasonable. This approach will be discussed in section 4.

The persistence of vortices on the giant planets against the inevitable pro-
cesses of dissipation (in the case of the GRS, for over 300 years) is one of their
most remarkable aspects. Essentially there must be a steady flux of energy
and vorticity into these systems to maintain them. It has been hypothesised
that this occurs by merger with smaller vortices. The Voyager images show
a vividly turbulent wake to the northwest of the GRS, possibly involving
strongly baroclinic instabilities and diabatic effects. Eddies from this region,
however, tend not to merge with the GRS; rather, small vortices from the
East may be observed travelling around and through the outer ring of the
GRS and being absorbed into the centre. This process must bear strongly
on the theory of the Earth's 'blocking highs' in which it is the baroclinic
eddies from the storm track regions which are thought to maintain long-lived
high-pressure systems. Haines and Marshall (1987) have attempted to model
such a system using modon ideas. The energy source for the jets on Jupiter is
widely believed to derive from deep winds, in turn driven by the strong inte-
rior heating of the planet. It is possible that the forced weather layer jets and
lower flow may have a direct dynamical influence on the GRS, for example
by the nature of Rossby wave propagation, or through diabatic processes.
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In this work, analytical approaches to modelling the dynamics of large
vortices will be made. A '11 layer' quasi geostrophic model, in which the ratio
of upper to lower layer depths is approximated to be zero, is used throughout
and it is assumed that the deep lower layer flows are unaffected by the exis-
tence of the vortex; that is, the vortex is shallow (Yano, 1987a). In section
3, 1- layer baroclinic vortices of piecewise constant pv will be constructed,
with boundaries perturbed from the circular in order to balance a weak basic
flow. In section 4, perturbed circular modon solutions will be derived for

shear flows on a 8 plane. The 5th section discusses qualitative implications
of the vortex asymmetries observed and modelled here. Speculation is made
as to significance of vertical motion and latent heating. All solutions will be
derived for the Northern hemisphere.

I ?3 Basic Concepts.

Some aspects of the structure of Jupiter's GRS and White Ovals may be in-
terpreted immediately. Fig. 3 shows a cortoon of the influence of a planetary
vorticity gradient on a vortex in which pv is conserved. The relative vorticity
of the fluid must change as it moves meridionally and the Coriolis parameter
changes, so the streamlines deform in the sense illustrated, as is seen for the
GRS. Since there is no finite pv structure for the vortex, little infomation is
gained about deformation of the boundaries of such a pv patch in shear flow.

The point vortex lies at a level of zero relative zonal flow, since it is simply
advected. Information about the general phase speed of larger vortices can
be obtained from the integral theorem of Flierl, Stern and Whitehead (1983),Ithat for a strongly compacting primitive system,

I J If,4d3r=0, (1)

where 0' M 0 - ;. For the 1- layer problem, in which,

I Q = (V 2 - F)O + F02 +.8y, (2)

Ithis gives,
(P± FcJ Ji~'dxd~- FJJEi2 ?k ---- 0,()
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In the case of ;U2 = 0 for a monopolar vortex it is required that c = -A,
westward and fixed. If U2 varies slowly over the region of the vortex (if the
scale of the lower layer flow is large) the approximation may be made, to first
order, that,

(,0 + Fc) - FU 2(0) = 0 (4)

If this is substituted into (2) for the far field, using the modon formulation,
Q = A(1i + cy) to give,

(V 2 -(F + A))(U - c) + F(U 2 - U2 (0)) = 0 (5)

simple arguments will demand that F + A = 0.
The quantity v2 - F+A is related to the 'refractive index', n, for the flow

(Flierl, 1987), where n = iv. For regions of v2 > 0 solutions are evanescent
with distance, while they are wavelike in regions of V2 < 0. A motivation
behind seeking modon solutions is to find ones which are essentially non-
radiating. The idea that v2 = 0 in the basic flow on Jupiter implies a
'neutrality' in the modon formulation. It is interesting to observe that this
condition is equivalent to the limit beyond which Arnol'd's second theorem
guarantees stability in the QG form; N = - -.I

4 Piecewise Constant Anomaly Models.

The basic formulation is illustrated in figure 4. Here the quasi geostrophic
potential vorticity equation (QGPVE) will be used to decompose the solution
into that of a weak zonal flow and a stronger azimuthal flow due to the pv
anomalies q, and q.. The assumption of weak zonal flow is required in order
that a linearisation be made on the boundaries of the pv patches, in terms
of the boundary perturbations, 7r and r from the circular. This assumption
is not justified by the observations from Jupiter, but the model serves to
illuminate certain dynamical effects and may be seen as a modon with A = 0
except at the boundaries between pv patches, in the notation of the previous
section.

The method for steady vortices follows the approach of Flierl (1988) for
instability problems; the QGPVE is decomposed into three parts so that, for
a single patch of anomalous pv,

(V 2 - F)Vb + py = q.(y) - F02(y),
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(V' - F)Oo = qH(1 - r)
(V 2 - f) =' qqS6(1 - r), (6)

and 0 + cy is required to be constant and continuous at r = I + 77 for the
propagating vortex. The linearisation occurs in writing o(1 + 77) = '0(1) + 70/,
and regarding far field and asymmetric parts to be of small order. '0' is
related to the Green's function for the operator and arises as the 'source'
perturbation t induces a non-axisymmetric component to the flow, required
to balance the basic flow, U.

q= --q77kKk(p)Ik(ur)sink#,
-q E77 Ik(Ap) Kk(jur)sinkO , (7)

for the interior and exterior respectively, where j? = F (0?i = 02 in the
modon notation) 77k is the k Fourier component of 7 and Ik, K1 are Bessel
functions ¢0 may be found as,

Oo = 'Ki(A)Io(,sr) -
is K ), 1(8)

for the interior and exterior. For uniform basic flow, i = -U, the boundary
condition is degenerate in 77 and it is required tiat -U + c = 0, a non-
propagating vortex. This arises because the form of the basic flow corre-
sponds, in 7q, to a uniform shift of the vortex in y. More general basic flows
wiil yield more interesting results and may allow propagation relative to the
flow at y = 0. For instance, simple shear U = -yy, gives the cos20 component
of boundary perturbation as,

_ 1 -y
72 = 4 q(I 2K 2 - IoKo) (9)

This behaves as is for p > 1.
In an attempt to allow more structure to the vortex, assume two pv steps

q, and q. at r = 1, a respectively with perturbation boundaries of 17 and T,
so that,

(V 2 - A 2)0o = qiH(1 - r) + qoH(a - r),
(V 2 _ ! 2),, = q,776(1 - r) + qor6(a - r). (10)
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From these, obtain,

Vo(1) qiIi(p)Kj(p) + q aIl(p)Kl(pa),
Vo(a) = qIji(A)Kj(pa) + q aIl(pa)Kl(pa),

2)= -qi7,,Jm(p)K.(p) - qoarmlm(A)K.(Aa),
=£(a) -q7j.Im(A)Km(Aa) - q.ar.Im(Aa)K.(Aa), (11)

where V0o - 1. Now, in uniform basic flow, U, the boundary conditions at
r = 1 + nand r = a +Tr yield,

S- c = -aq.Ii(p)Ki(pa)(T1 - ,71),
(i - c)a = q111(p)Kl(pa)(rl - 711). (12)

For non-zero U - c, the pv steps are related by q. = -; and the relative
shift in boundaries, Al -- Tl -71 = (-- . These forms are sketched in
figure 5. The outer band of the (anticyclonic) system is relatively cyclonic so
that the shift of the boundaries admits a dipolar component to balance the
basic flow. However, this form of radial pv structure is dynamically unstable,
as can be seen from contour dynamics routines, and is not of physical interest.
For a system with sheared basic flow u - c may be zero and ql and qa may
be varied freely. The cos26 terms must be matched and give,

772(qlI(K 1 - 12K 2 ) + aqjhKl(A))

-r 2aq.I 2K2(pa) + 1 - = 0,
4

-r2(qiI1 K1 (pa) + aq.( Ii(Aa)Ki (pa) - I 2 (ipa)K2 (Aa))1

-712aq.I 2(pa)K 2(pa) + 1ya2 = 0, (13)

where the arguments of the Bessel functions are p unless given otherwise.
This is a linear pair of equations for (172,,r 2 ), given ql, q., a and -. To in-
vestigate these, fix q, + q., a and "y so as to create a vortex of fixed inner
pv and varying outer structure. The curves 772 and r2 are shown in figure
6, for different values of outer radius, a=1.25 and 2. When a = 1.25 the
boundaries are sufficiently close to interact (recalling that the Rossby radius
of deformation, LD, is 0.1 here, when F=10) whereas in the a=2 case they
behave independently. This is reflected in eqns (13), since the I,,(p)K1 .(pa)
terms will become very small as a > 1, so the solutions reduce to those of a
single boundary.
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5 Modons in Weak Basic Flows.

The QG theory follows,

a
[i + J(', .)]Q = 0. (14)

For steady, propagating solutions, write _= -c- and obtain,

J(ý,Q) = 0,¢ ='O-y, (15)

so that Q = Q(4). Then,

-+ _Q • -1 2d 2Q

Q(10 -- Q0 + O(Wk) (16)
do~ 2 dip2

which gives,

[V 2 - (F + A)I -IA' 2 = (Fc -)y - F'0 2 + Qo, (17)
2

where A = dQ/dtp.
The 'modon' formulation is that in which it is taken that Q = A- in

the above, where A is piecewise constant (Flierl et al, 1980), so that (17)
becomes, [V2 - (F + A)]b = (Fc- fl)y - F0 2 + QO. (18)

In the comments of section N the quantity v2 = F +A was defined to describe
the nature of solutions. When v2 is a positive constant, free solutions of (18)
are of the form,

4 = (a.j.(zr) + b.K.(vr))e', (19)

and when v 2 is a negative constant,

4 = (c.J.(vr) + ,.YC(vr))e"', (20)

where In, Kn, J,, and Y, are Bessel functions and (r, 6) are polar coordinates.
A combination of the modon and piecewise constant solutions may be

made in which a linear (Q,O) relationship is applied, both within and outside
a perturbed circular boundary. The motivation is to produce an improvement
on the piecewise system while perturbing the boundary in order to add n-pole
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solutions to the basic monopolar modon, to balance the non-uniform external
pv. The linear relationship may be chosen to match the observations of D189,
from which the graph in figure 7 is plotted. Effectively this shows F+A, where
A is the constant of proportionality, through the GRS (actually calculated
for the 'generalised geostrophic' form). Of note is the strongly 'evanescent'
interior flanked by alternating bands of slightly wavelike or evanescent nature.
In particular, far from the vortex the observations of Dowling (1992) indicate
a relationship Q = -FV, or 'neutrality' in this formulation. The departure
from neutral to the North of the GRS (fig 7) is likely to relate to the fact that
this region of the flow is not steady, and involves travelling disturbances.

An alternative far-field approximation would be that of Ingersoll and
Cuong (1981) for which V =2. This will not be pursued here; in the exterior
it will be taken that Q is a linear function of + = ± cy, where the constant
of proportionality is taken to be -F.

The basic system will be,

Q= Qo+±A
l (21)

for the interior and exterior, with o& = {r = 1 + ETTksinkO}. It is required
that & be constant and &, be continuous on " : wlog set ý = 0 on 8D.
Thus the jump in pv across OP will be -Qo. For an anticyclone a negative
value of Qo corresponds to the limit of a narrow band of large negative

i.e. a 'wavelike' band of F+ A = -k 2 . The equations become, for the exterior
with c = 0,

(V 2 - F)V + F02 + = -FR
V l = 0, (22)

where i - & + 0', and for the interior,

(V 2 - (F + A))O' = (F + A)Vk + Qo, (23)

where F + A will be taken to be positive to match the structure deduced
from D189 (figure 7). Since 02 is not specified the choice of V; is arbitrary; V;
will be specified a priori and 02 will be defined to satisfy (22). This function
?P2 will be assumed independent of the vortex and continued into the interior
region. For the case of simple shear in the basic flow, take

12

-~-v3I
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where -y is a small parameter (positive for northern hemisphere anticyclonic
shear), and expand 0' as 0' = ¢o + -fk1 + 0(7y2) so that,

V2 l' = 0

(V 2 
- A)Po = Qo,

(V 2 - IA2)',O = -2y2 (25)

for the exterior and interior respectively, with 0 = 0 on O) and continuous
normal derivatives. Note that although in this case the terms f6y and F7P2 in
the QGPV cancel, the far field pv, Q, is not uniform. Rather, Q = -Fyy2 , so
Rossby wave radiation is not excluded. However, there is a clear symmetry to
the pv field and the perturbations can not have the north-south asymmetry
of figure 3.

The matching conditions for (25) yield, for the zero order vortex,

A logr, (26)

for the interior and exterior. The forms are plotted in figure 8, for various
values of A for the interior, to move the system slightly away from the con-
stant interior pv scenario. There are a broad range of axisymmetric forms
that may be evaluated within this format.

Solving for 7k, yields for the perturbation terms,

=~ ~ ~ , (,A)( + ' 0 ~)a 212 (Ar)cos2O,

Cenr + :(1 - r2) + (• + 2(r 2 _ '))cos20, (27)

in which d = -'172, a 2 = _, d-3- 7 and,

7 7 I o(j)I2(p) (28)
,12 = Qo Io(G,)Ij2() - I,()2.

For y > 0 and Qo < 0 (anticyclonic vortex in anticyclonic shear) 172 > 0 - the
vortex's y dimension is reduced as in the case of the Moore-Saffman ellipse
when the vorticity of the flow has the same sign as that of the vortex. A, B
and a, are linear functions of ih which is arbitrary: any uniform component
of far field flow may be admitted by appropriate choice of boundary pertur-
bation. The Flierl-Stern-Whitehead integral theorem will remain satisfied
because of the balance between 02 and V in the basic flow equation.
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It is now important to compare the magnitude of the boundary deforma-
tion 772 in this case with that of the piecewise constant case. Fig 9 shows
the curves of r72 against 1p. The modon form is dramatically less perturbed
at the boundary: in essence it seems that the modon is much 'stiffer' and
is deformed much less than the piecewise constant case, for a given external
flow. This may be illuminated by considering the equations for the external
perturbation streamfunctions in each case:

V7'= 0, (29)

for the modon, and

(V 2 - F)i/' = 0, (30)

when the pv is piecewise uniform. The modon perturbation is solved in an
effectively barotropic form, with a wide radius of influence. The perturbation
exterior streamfunction for the modon feelq itself to be in the limit of small
p for the piecewise solution.

Plots of the streamfunction with various values of Froude number, A2 ,
and basic shear, -y, are shown in figur - 10. For large 11

2 and 'y there are
clear problems in the linearisation of the boundary condition but for lower
-y = 0.05 (a factor of 10. greater than the typical shears for the piecewise
constant vortices of Yano and Flierl (1992)) the match seems good. For
lower Froude number, very large shears can be accomodated. There is a
clear motivation here to numerically locate an exact boundary which will
allow the inner and outer fields to balance. Another useful extension would
be to study a case with an annulus of v2 < 0 ('wavelike') in order to match
more closely the observed structure of figure 7, from D189.

6 The Role of Vortex Asymmetry.

The asymmetry of the GRS may be cruciai to its dynamics in other ways,
apart from allowing it to reside in a far field pv gradient. From the expansion
of the shallow water equations in small Rossby number it is possible to de-
duce, at first order, a diagnostic equation for the vertical velocity in terms of
geostrophic quantities. This is usually written in the form of an 'w-equation'
in which the Laplacian of the pressure tendency (w 22) is forced by the
divergence of a 'Q-vector' (Gill, 1983) which represents a balance between
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terms involving advection of entropy and vorticity:

V 2w = V.Q. (31)

Q is defined as Q = -(V .).VS, where S is the entropy and is proportional
to k A °-8- where ds is the path along isentropes. In polar coordinates Q is
given by,

Ou.OS 1 (Ou7  OS OuoeaS 1 Ou+ as| +7 or o~r +, 00(2

and it may be shown that its divergence for a circularly symmetric system
is identically zero. Given suitable boundary conditions, w must be zero.
However, asymmetries may allow vertical motions within the vortex.

Speculation as to the consequences of vertical motion within the GRS is
difficult owing the great lack of understanding of the composition and phys-
ical behaviour of its clouds and condensate matter. Certainly it has been
suggested in the past that the GRS is a form of tropical cyclone (vorticity
increasing downwards) with internal diabatic heating maintaining the circu-
lation over long time periods. If it is held that the vortex must be weak in
magnitude below the weather layer then the warm core would require that
the upper level flow be anticyclonic. It is observed that around -2 of Jupiter's
vortices are anticyclonic - a tentative explanation could be that the longest-
lived vortices are tropical cyclones with latent heating at the core and weak
low level circulation due to the relationship between the weather layer and
deep winds. It has also been observed that the cloud top temperatures within
the central region of the GRS are lower than those on the periphery, possibly
indicating diabatic (onvective processes. Problems with the idea of diabatic
forcing of Jovian vortices include the fact that the observed horizontal scale
of the core is not small, as it would be expected to be for Earth's moist sys-
tems: this could be a consequence of the microphysics involved. Also, Yano
(1987b) has argued that the influence of latent heating must be small.

Remaining with the problem of circularly symmetric/asymmetric sys-
tems, it is known for tropical cyclones that for their angular momentum
to increase, the system must not be symmetric. This, in the context of the
GRS could be a allowed intermittently by vortex merger, but appears in
practice to be an overall feature of the system.
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7 Summary.

Many of the features of the dynamical structure of large Jovian vortices can
be immediately understood in qualitative terms. For example the equator-
ward shift of the outer region of faster flow may be explained by the existence
of a #-effect, probably modified by the existence of a deep streamfunction
(section 2). In more specific terms, it has been possible to model the pv
structure of these vortices using one or two perturbed circular boundaries.
Regions of piecewise constant pv illuminate how the boundary of a spot will
deform in order to exist in a far-field flow and, in the two-contour case, how
the width of the intermediate region may change. More sophistication has
been used in this formulation by including a modon formulation within the
near-circular boundaries. This is strongly motivated by the observational
data and, for the one contour case, produces much more robust vortices than
those of piecewise constant pv.

There are several directions in which this work may be fruitfully extended.
Firstly, numerical computations of the exact, steady boundaries in all the
modelled cases above would be useful, in examining the success of the lineari-
sation. Also, stabilities of these solutions should be tested; this is probably
also amenable to numerical work. Beyond the results given here, it would
be worthwhile to repeat the analyses for cases in which fly + F0 2 has a non-
trivial y-dependence, in which case there may be N-S asymmetries in the
perturbation to the vortex: the obvious next case would be that of a basic
flow cubic in y. Finally, it should be straightforward, if algebraically tricky,
to construct modonlike solutions with an annulus of V2 = -k 2 > 0 (wavelike)
in order to gain a closer look at the behaviour of the sharp gradient of Q
with 4 near the edge of the vortices.

It would be relatively simple for all these cases to evaluate the Q-vector
structure of their interiors. This could be performed for the observational
data, provided assumptions about the thermal field are made. There is very
little understood about the thermodynamics of Jovian vortices and this could
be a revealing starting-point for their investigation.
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10 Figure Captions.

1. Cross-sectional structure of the Great Red Spot, White Ovals and
zonal flows of Jupiter, from Dowling and Ingersoll (1989).

2. Relatonship between Bernoulli function, B, and potential voricity, q,
for the Great Red Spot and White Ovals, from Dowling and Ingersoll (1989).

3. Cartoon of streamlines for a point vortex on a Northern Hemisphere
,6-plane. Flow moving from South to North becomes more anticyclonic (its
relative vorticity decreases) due to the P8 effect, and vice versa. This helps
to explain the form of the streamlines of the GRS and White Ovals.

4. The basic formulation for the piecewise continuous models. Boundaries
r = 1 +r 7and r = a + r at which there are pv steps of q, and qa respectively,

enclose regions of constant potential vorticity anomaly.
5. The steadily propagating solution in the piecewise continuous case.

The deformation of the boundaries allows a dipole perturbation streamfunc-
tion. This solution will not be stable.

6. Graphs of the boundary perturbations j7 and r for the piecewise con-
tinuous system, with p - 3v

tinuus sstem wit LA -L =3that is, LD = 0.1, and a=1.25 or a=2,
against structure, qo. The central pv is fixed to be -1; the structure with
varying q. is sketched. When the boundaries are close, their perturbations
are coupled; when a is larger the perturbations become independent.

7. Graph of P =- -Y' against latitude through the Great Red Spot.
n = iw is a 'refractive index' for the flow and determines whether solutions
will be wavelike or evanescent. The departure from 'neutral' to the North is
probably due to the unsteadiness of the flow in this region. Plotted by Tim
Dowling, from DI89 data.

8. Basic state pv and streamfunction profiles with radius through the
vortex, for varying Q, 4' relationship. (a),(b) A = 0 so interior pv is constant,
(c) Lambda = 10, (d) Lambda = 1.

9. Graphs of boundary perturbation 17 with u •L for the piecewise
continuous case and the modon form, each with single boundaries and a
pv step of -1. The basic flow is simple shear with V; = --Yl,2, symmetric
about y = 0. The modon form seems much more 'robust', being deformed
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considerably less for given shear (-) and 14.
10. Streamfunction contours in the (x,y) plane. (a) Basic state, 0b0,

with F = 10 and A = 1 (small departure from constant interior pv), (b)
total streamfunction for this case when shear, -y = .05, so that boundary
perturbation, 172 = .12, (c) total streamfunction for F = 1, -y = 0.2 so that
'72 = .23.
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mrotential vorticity q versus Bernoulli function B. (a) Modei
results for the GRS. Different functions q(B) are allowed for the
northern and southern open streamline regions, denoted by N and
S, respectively. The central closed streamline region is split into two
pieces, denoted by C and I. The inner region I is defined by B > 15.
x 10' m' s-', the region C is defined by 15.6 >-B > 8.3 x 104 m
s- 2, and the regions N and S are defined by B < 8.3 × 104 m2 s-2
with latitude greater or less than -23*, respectively. Refer to Fig. 2
for a map of B. The function 1/q(B) is assumed to he piecewis
quadratic in each region. The constant term 1 /q0 is specified an
equals ]/(-1.40 x 10-1 s m-2 ) in this figure. (b) Same as (a) bu2
for the Oval BC. The region I is defined by B > 13.1 X 104 m2 S-2,
the region C is defined by 13.1 >, B > 7.1 X 104 m2 s-2 , and the
regions N and S are defined by B < 7.1 X 104 m2 S-2, with latitude
greater or less than -34.5°, respectively. The specified parameter
I/qo equals i/(-1.84X l0-9 s m- 2 ).
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The Stability of Jupiter's Zonal Winds

Andrew Stamp
Research School of Earth Sciences

The Australian National University

August 1992

1 Introduction

The wealth of data obtained by the Voyager spacecraft encounters with Jupiter, Saturn, Uranus
and Neptune has sparked interest in the dynamics of the atmospheres of the giant planets. Of
particular interest are the long-lived vortices, the alternating jet streams, and the slowly moving
waves. We would like to understand what gives rise to these features, and what maintains them.
Some pieces of the puzzle have fallen into place, for example it has been demonstrated numerically
that Jupiter's zonal winds give rise to the Great Red Spot through a shear instability mechanism
(Dowling & Ingersoll 1989). But if the zonal winds beget the vortices, then what begets the zonal
winds?

Before we try to understand the larger problem of the origin of Jupiter's zonal winds, the
first step is to analyze the high-quality Voyager data and determine the basic-state winds, both
the cloud-top winds and the underlying deep winds. The next step is to investigate the stability
properties of the basic-state winds. It is known that Jupiter's cloud-top zonal winds strongly violate
the Rayleigh-Kuo stability criterion. However, the zonal winds determined from Voyager imag~s
taken in 1979 precisely match the zonal winds determined from Hubble Space Telescope images
taken in 1991 (Huber et al. 1992), and it is hard to understand how a complicated wind profile like
Jupiter's could be unstable and yet not vary at all in 12 years. We will take as our starting point the
hypothesis that Jupiter's cloud-top zonal winds are neutrally stable with respect to Arnol'd's 2nd
stabilty theorem (Dowling 1992), and investigate numerically the growth rates and phase speeds of
zonal-wind configurations that are close to this neutral configuration. Since stability theorems are
more completely developed for the quasi-geostrophic equations than for the primitive equations, we
will study both cases in order to gain insight into the differences and similaxites.

1.1 Review of wave observations

Wave phase speeds are an important diagnostic of an atmosphere's basic-state configuration. Several
observers have recently reported evidence of slowly moving Rossby waves in Jupiter's atmosphere.
The waves are notable for having about 10 wavelengths in the zonal direction and for having motions
that are slow in comparision to the local zonal wind speed, as measured in the planet's magnetic-
field reference frame. The first observations of slowly moving waves on Jupiter were reported by
Magalhies et al. (1989) from an analysis of the Voyager infrared (4-55 Am) IRIS data. They found
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a mode 9 wave located in the lower stratosphere between 5-15' N, moving with a phase speed of
c = 10.5 ± 12.4 ms- 1 . Soon thereafter, Deming et al. (1989) reported similar waves at deeper levels
from an analysis of ground-based infrared (8- 13 sm) observations. Two mode 10 waves, one at the
equator and other at 200 N, were found with the latter having a phase speed of c = 25 1 33 ins'.
Figure (1) shows the temperature structure of the wave at 200 N on two successive days and the
cross-correlation function used to determine the phase velocity.

There is apparently little correlation between these stratospheric waves and the underlying
features in the cloud tops. In contrast, Saturn displays two prominant waves in its cloud tops.
Sromovsky et al. (1983) carried out a detailed analysis of the Ribbon, a narrow, dark, wavy line
in the clouds at 420 N, which is centered on a strong eastward jet. The dispersion relation for the
Ribbon, shown in Figure (2), is noisy but does indicate that the phase speeds are bounded between
zero and the peak jet speed. Godfrey (1988) discovered Saturn's Polar Hezagon, a mode 6 wave
at 760 N that is moving with a phase speed of only c = 0.8 + 1.1 ms-1. The Hexagon is centered
in a jet that has a peak speed of just over 100 ms-'. Voyager images of the Hexagon reveal the
existence of an isolated vortex on one of its six sides, and the most likely explanation is that the
vortex is forcing a standing, mode 6 Rossby wave. We will return to these observations of slowly
moving waves on Jupiter and Saturn when we examine the Rossby-wave dispersion relations for the
basic-state zonal wind profiles considered in this paper.

1.2 1-1/2 Layer Model

In attempting to qualitatively reproduce the phenomena seen in Jupiter's atmosphere, numerical
modelers have represented the continuously stratified atmosphere with simple 2-layer shallow-water
models. The models consist of a thin "weather layer" of constant density p that lies above a deep
layer of constant density P2 > p. All deep layer variables will be distinguished with a subscript
"2." In such models the lower layer represents the convectively adjusted, neutrally stratified deep
atmosphere. The constant-density assumption is not as unrealistic as it first appears to be, because
when entropy is used as the vertical coordinate in the full equations they are mathematically similar
to the shallow-water equations.

A common simplifying assumption is that the lower-layer motions are zonal, steady and unaf-
fected by the time-dependent motions in the upper layer. Such a model is called a "1-1/2 layer"
model, rather than a 2-layer model, because the deep layer is not free to evolve. As shown in
Figure (4) the 1-1/2 layer model is equivalent to a 1-layer model with bottom topography because
the deep-layer motions give rise to horizontal variations in the deep-layer pressure field that appear
to the upper layer as variations in a lower boundary.

The 1-1/2 layer model has been applied to Jupiter by many groups and a number of different
assumptions about the deep layer motions have been made; see for example Ingersoll & Cuong
(1981), Williams & Yamagata (1984) and Marcus (1988). However, Dowling & Ingersoll (1989)
inferred the deep layer motions to within a free parameter by applying a vortex-tube stretching
analysis to the Voyager data. More recently Dowling (1992) sought to determine an empirical
relationship between the upper layer's zonal velocity, U(y), and the meridional gradient of potential
vorticity, V,(y), from the Jupiter data. (An overbar will hereafter denote a zonal average.) It was
found that the data satisfy:

(i\

q GOY
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where
f , = (2)
gk gh

f is the Coriolis parameter, 3 = fy, u2(y) is the deep-layer zonal wind, g is the reduced gravity and
h(y) is the upper layer thickness. This relationship is shown graphically in Figure (5).

1.3 Current research

In this paper we investigate the stability of the empirical basic state (1). The structure of the paper
is as follows. A review of the various analytical stability criteria that are relevant to the problem is
presented in § 2. Since most stability theorems provide necessary rather than sufficient conditions
for instability, and since such theorems do not provide estimates of growth rates in the case of
instability, we proceed with a numerical linear analysis that will address these questions. In § 3 and
§ 4 we examine the quasi-geostrophic and primitive shallow-water cases, respectively, and in §5 we
draw conclusions and point to future work.

2 Review of Stability Theorems

The ubiquitous nature of zonal shear flows has resulted in considerable efforts to determine the
stability properties of such flows. An instability occurs when an interaction between waves draws
energy from the zonal winds and causes the waves to grow to large amplitudes. Stability theorems
specify conditions that guarantee that there will be no such destabilizing interactions. The restoring
force for Rossby waves, the large, slowly moving waves that control the meteorology, is proportional
to changes in the background potential vorticity, so most stability theorems specify there condi-
tions in terms of the potential-vorticity gradient. But the faster moving gravity waves can have
a destabilizing influence as well. At present, stability properties are better understood for the
quasi-geostrophic equations, which filter out the gravity waves, than for the primitive shallow-water
equations.

In the quasi-geostrophic limit the potential vorticity gradient (2) takes the form:

=,3 -- V-- + Ld2(U -"92) , (3)

where L2 = g7h/f 2 is the square of the (first baroclinic) deformation radius. The most commonly
cited stability theorem is the Rayleigh-Kuo theorem, which states that if for all y:

Q,_>0 or Q._<O, (4)

then the flow is stable. The barotropic stabilty criterion refers to the special case fZ = - 2. It has
been known since the Voyager encounters in 1979 that the strong positive curvature in Jupiter's
westward jets is enough to overcome 3, which is positive-definite, and make Q,, negative. Estimates
of the term involving u- i 2 only add to the conclusion that Jupiter's winds violate the Rayleigh-Kuo
stability criterion.

However, there are at least two known ways to violate the Rayleigh-Kuo stability criterion and
still have a stable flow. For example, if in some reference frame:

- < < 0, (5)
U
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for all y, then the flow is stable. This stability criterion is known as Fjortoft's (1950 ('leorem, or

in the case of large-amplitude perturbations as Arnol'd's (1966) 1st stability theorem. Hipa (1983)
extended this theorem for small-amplitude perturbations to the 1-layer shallow-water equations, for
both the local cartesian (beta-plane) geometry and the spherical geometry. The added condition
:U2 < gh is needed to insure that gravity waves do not destabilize the flow. In addition to his 1st

theorem, Arnol'd also showed that if in some reference frame:

2 1 (6)
a£2'

for all y, then the flow is stable. We have written (6) in its linear-stability form and for the special
case when the deformation radius is much smaller than the planet's radius, as it is on Jupiter; for
a complete discussion of Arnol'd's stability theorems see McIntyre and Shepherd (1987). Arnol'd's
2nd stability theorem has not yet been extended to the primitive shallow-water equations. Our
numerical experiments below will explore this area.

3 Quasi-geostrophic Model

In the quasi-geostrophic limit Jupiter's empirical basic state (1) becomes:

d (7)

This relationship between the zonal wind and the potential vorticity gradient violates both the
Rayleigh-Kuo and Fjertoft-Arnol'd stability criteria. However, it is evident that it is on the margin
of stability with respect to Arnol'd's 2nd stability theorem (6). Arnol'd's stability criteria are
sufficient conditions and their violation does not imply instability. However, we will now show
numerically that violation of Arnol'd's 2nd stability theorem is in fact sufficient for instability for
the U = cos(y) basic state.

3.1 Preliminary analysis

The shallow-water equations consist of two equations that describe the conservation of momentum
and one that describes the conservation of mass. The quasigeostrophic approximation introduces a
streamfunction 7k such that:

U =-7,, v = +¢, (8)

and combines the three shallow-water equations into a single equation that describes the conserva-
tion of potential vorticity:

Qt + uQ. + vQ, = 0, (9)

where

Q = fo + fly + 7P.. + Ov - Ld'(0 - 02). (10)

We now write u, v, and Q as the sum of a basic state plus a small perturbation:

u(X,y,t) = -9(y) + u'(X,y,t) , (11a)

v(Xy, = v'(X,y,t) , (11b)
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Q(x,y,t) -= (y) + Q'(X,y,t) (llc)

All basic-state quantities will be distinguished by an overbar since they are assumed to be zonal,
while all perturbation quantities will be distinguished by primes. By substitution in (9) the linear
perturbation equation is found to be:

Q, + UQ' + vr = 0. (12)

To investigate Jupiter's empirically determined basic state (7) we introduce a one-parameter
family of basic states:

Ai= ý A~L. (13)

For a given zonal wind profile U(y) the parameter A determines the strength of the potential vorticity
gradient Q, and thus the restoring force driving the destabilizing Rossby waves. Application of
Arnol'd's 2nd stability theorem to (13) shows that the case A > 1 is stable. The case A < 1 will be
investigated here. If we define a perturbation streamfunction lb' such that:

i, -0 ' +V, ' (14)

then by substitution (12) becomes:

Q 9 + (Q' + A=1L 0. (15)

To solve (15) note from (10) that the perturbation potential vorticity and streamfunction are related
by

[82 a2 -
OX1 + i-2- Ld] (16)

Next, we Fourier decompose the perturbation streamfunction in x and t:

0'= ý(y)exp[ik(x - ct)] , (17)

and rewrite (15) in the form:

(U - c) -2 _ (k 2 + Ld )] ý + A-`Ldib 0.= . (18)

To facilitate comparision of numerical solutions with observations it is necessary to nondimen-
sionalize (18). In anticipation of approximating Jupiter's basic state zonal flow (Figure (5)) by a
cosine profile

.27ry
U(y) = UO0 Cos(---) (19)

we nondimensionalize all velocities by the maximum zonal jet velocity u0 and all lengths by L/27r
where L is the meridional zonal jet wavelength. For Jupiter u0 - 50 ms- 1 and L ; 15,000 km.
Finally, for convenience the notation Ld is used to refer to the nondimensional deformation radius
27rLd/L hereafter. The resulting nondimensional perturbation equation has the form (18) with all
variables being nondimensional and of the same order.
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3.2 Application of Arnol'd's stability theorems

The energy associated with the linear perturbations may be calculated by multiplying (15) by pV,'"
and integrating over the area of the domain, which yields:

- =-pJJfUOk Q dxdy, where E=fJ I pl 2+I4 12 +L - I 0I2 dxdy. (20)

Similarly, the enstrophy associated with the linear perturbations may be calculated by multiplying
(15) by pQ' and integrating, which yields:

--•= -A-Z1 -2 'Z=P / ,F =-pAi L2 IQ dxdy, where Z J IQ'I2 dxdy. (21)

From two equations it is seen that

T(E-AL ) 0. (22)

Assuming that the system is periodic in y, as is the case for the basic state U = cos(y), then the
perturbation streamfunction may be expressed as:

00

= exp[ik(x - ct)] 07 _ 1 exp(ily), (23)

where c = c, + icj. Subsequently the energy-enstrophy conservation equation (22) may be reduced
to the form:

c [• {(k + L +lL1)(¢b 1 - ALd (k2 + -l-L2)]}] =0 . (24)

We note that if every term [1 - AL2(k 2 + 12 + L- 2 )] in the sum is either positive definite or negative
definite then cji _ 0 and the flow must be stable. The positive-definite case yields the Fjortoft-
Arnol'd stability criterion:

1-AL 2(k2+I 2 +L- 2 ) >0 = A<0, (25)

and the negative-definite case yields Arnol'd's 2nd stability criterion:

1AL (k2 + 12 + L-2 ) < 0 = A > 1. (26)

These results are for small-amplitude perturbations, but Arnol'd's original work was for the more
general case of large-amplitude perturbations. See McIntyre & Shepherd (1987) for more details on
the subject of nonlinear stability.

3.3 Stationary neutral stability

The special case of stationary neutral stability, c = c, + ici = 0, yields simple analytic solutions
to perturbation equation (18) that are useful for checking numerical code and for providing points
about which to derive asymptotic solutions.
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When c = 0 the perturbation equation (18) reduces to

,- [2V + Ld 2 (1 A~)] 0 (27)

Again we decompose ý(y) into a summation of exponential functions

b(y)= • V,,exp(ily), (28)
I 1=-oo

and by substitution find that stationary neutral stability occurs at the discrete set of wavenumbers
given by

Figure (6) shows how the number of cases of stationary neutral stability varies with Ld and A.
Neither Ld nor A is known for Jupiter, but we anticipate that the most appropriate nondimensional
parameter range is:

0.7 < A, Ld <_ 1.2. (30)

In this parameter range (29) implies that there is only one k for which c = 0. We will have more to
say on this subject later in connection with the slowly moving waves on Jupiter.

3.4 Galerkin formulation

Numerical solutions of the perturbation equation (18) are achieved by employing the Galerkin
method. In this method the dependent variables are expanded in terms of orthogonal functions,
each of which satisfy the boundary conditions; here

(N-1)/2
¢(y)= • ¢.€•y).(31)

n=-(N-I)/2

The basis functions are presumed to satisfy

< Onn(Y)qm(y) > 6=,n, , (32)

where the inner product represents an integration in y over the domain. This produces a matrix
equation

< 7,4€-s,, > ¢, = c¢,, (33)

where -f, is independent of y. That is, for each k there is an N x N matrix eigenvalue system of

the form (33). The N eigenvalues %re the complex phase speeds, c = c. + ici, and the N modes are
given by the eigenvectors, 1 = On in (31). We note that if cj > 0 for a given mode then this mode
is unstable and growing exponentially at the rate kci.

In order to complete the calculations the basic zonal flow was chosen to be U = cos(y) as this
approximates Jupiter rather well and is amenable to numerical solution. Since this basic state is
periodic in y we use complex exponentials as the Galerkin expansion functions, On(y). This simple

case yields a Galerkin matrix that is tridiagonal, with zeros on the diagonal:

I Me= co; M = 7 1 - AL2(k- +'LJ2 + -2 2) (n-m,_1 + ,n-M,-.) (34)

2I~~2+L
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This matrix eigenvalue system was solved for different values of the stability parameter, A, and
deformation radius, Ld. For each parameter pair a range of wavenumbers k were considered and
the growth rate and phase speed of the most unstable mode were recorded.

3.5 Results

The results of the numerical calculations are now presented and it is noted that because the most
unstable modes were always stationary c, = 0 it is not necessary to show plots of c, vs. k. Figures
(7a,b) show the growth rate kc, vs. k for the most unstable mode, for two parameter regimes. For
the Jupiter-like case of Ld = 1.0 and A = 0.8 there is a single wavenumber, given by k = 0.5, at
which c = 0. Conversely, for the less Jupiter-like parameters Ld = 0.2 and A = 0.8 stationary
neutral stability occurs at three wavenumbers given by k = 1.50, 2.29 and 2.50. Both of these
results are predicted theoretically by (29). It is important to note that in both cases there is a
large k (small wavelength) cutoff which, because all of the instabilities are stationary, is given by
(29) with n = 0. Furthermore, in the Jupiter-like case the instability curve is smooth with a single
maximum indicating that it is the same mode that is the most unstable at all wavenumbers. In
Figure (9a) the eigenfunction of the most unstable mode is plotted and it is seen that at y = ±7r/2,
or when i1(y) = 0, the Reynolds stress u'vj is in the opposite direction to the shear of the zonal
velocity U., thus causing the instability.

To investigate the necessary and sufficient nature of Arnol'd's 2nd stability theorem two other
plots were made. The growth rate is plotted against wavenumber for different values of A but with
Ld = 1.0 in Figure (10). It is evident that the growth rates decrease as A -+ 1. This is because
the potential vorticity gradient Q,, which provides the restoring mechanism for the destabilizing
Rossby waves, decreases in this limit. In Figure (11) the maximum growth rate is plotted against A
for Ld = 0.8,1.0,1.2. The obvious implication of this plot is that in all cases the point A = 1 defines
neutral stability and thus violation of Arnol'd's 2nd stability theorem is sufficient for instability
for the i! = cos(y) basic state. It is also seen that for any given A the growth rate increases with
decreasing Ld.

Finally, it is useful to compare the numerical results with the observations of slowly moving
waves discussed in §1.1. For the Jupiter-like parameter regime Ld = 1.0 and A = 0.75 the most
unstable mode occurs at k = 0.36. If we consider a Rossby wave on Jupiter at 20'N then the
planetary mode number is

71,400 km x cos(20°) x 0.36 x 2r kin 10 (35)

where 71,400 km is the radius of Jupiter. This is consistent with the slowly moving waves of
Magalhies et al. (1989) and Deming et al. (1989). Furthermore, the positioning of the instability at
latitudes where i(y) = 0 as, shown in the eigenfunction for this case (Figure (9a)), is also consistent
with numerical simulations. Of course, as shown in Figure (10), changing Ld and A alters the
wavenumber of the most unstable mode; for Ld = 1.0 the range 0.8 < A < 0.9 corresponds
to 0.2 < k < 0.3. However, the predicted planetary wavenumbers remain consistent with the
observations.

An analysis of Saturn's Ribbon was also conducted. Stable, narrow eigenfunctions centered on
the eastward jet (y = 0, V = 1) were found that resemble the Ribbon. These turnedstward jet
(y = 0, V = 1) were found out to be nondispersive continuum modes, whereas the c, vs. k found by
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Sromovsky et al. (1989) (Figure (2b)) appears to be dispersive. Sromovsky modeled the dispersion
relation assuming an infinite deformation radius and neglecting the contribution of the zonal wind
curvature to the potential vorticity gradient:

C = U - k/- +± L2 ( ) /k - l. (36)
V + 12 + Ld +1

As Dowling (1992) sh3wed that 3 contributes only approximately 20% to the potential vorticity gra-
dient for Jupiter anr. Saturn the accuracy of this dispersion relation may be limited. Re-evaluating
the dispersion relation in light of the error bars the Ribbon could be nondispersive as suggested
by our numerical calculations. Alternatively, the dispersion relation may be valid and our analysis
unable to reproduce its behavior. This could result from several reasons. First, although the ba-
sic state (7) is appropriate for Jupiter it may not be so for Saturn. Second, this basic state may
have been appropriate but representing the basic state zonal wind by a cosine profile inappropriate.
Third, the correct parameter ranges in Ld, A or e may not have been explored. However, we favor
the explanation that the Ribbon is fundamentally a nonlinear phenomenon.

4 Shallow-water Model

4.1 Preliminary analysis

In the shallow-water system there are three governing equations; conservation of eastward and
northward momentum and conservation of mass. In order to make the periodic assumption discussed
in § 3.4 it is necessary to restrict the analysis to the f-plane (i.e. fy = 03 = 0). This restriction is
not compromising because/l contributes only approximately 20% to the potential vorticity gradient
q, on Jupiter (Dowling 1992). The resulting conservation equations are

ut- (C + fo)v + g(h + h2). + uu. + vv. = 0, (37a)

vt + (C + fo)u + g(h + h 2)y + uu + vvY = 0, (37b)

ght + V.(ghv- = 0, (37c)

where " = -u 2 + vy is the relative vorticity. As Jupiter's empirical basic state (1) is most simply
expressed in terms of -q1, it is convenient to define the potential height

17 -- q-1 _ gh
C+fo (38)

Using 77 instead of gh, the shallow-water equations become

ut - (C + fo)(v - 7) + (gh2). + uu. + VV. + (-uyx + Vz)r1= 0, (39a)

Vt + (C + fo)(u + 77y) + (gh 2 )y, + uU + vvy, + (-un + v2,) 1) = 0, (39b)

r7 + ur77 + v77y = 0 . (39c)

As for the quasi-geostrophic case we investigate stability by decomposing the fields into two
portions; a basic state and a small perturbation

u(z,Y,t) 0= U(y) + u'(z,y,t) , (40a)
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V(, Yt 0 ý '(X,),tY, 0(40b)

.q(Xy, = 3(y) + q1'(X,y,t) . (40c)

We find that prescribing this basic state requires that the lower layer topography have the form

(gh2)y = -u-fUy + uyyjr - (- Uy + fo)(-g + 11y)' (41)

and Figure (4) shows the form of the free surface and bottom topography for a cosine basic state
zonal flow used in this study. By substitution the linear perturbation equations are found to be

u', - (-U, + fo)(V' - r') + flu" + (-u'Y + VZ'.)1I = 0, (42a)

v, -V! + f0)(u' + 77f') + (-uy' + v')(U + jjy) + Uuu• + u'ty - Uyr7' + %l-uw., + v'y) =0, (42b)

7 ' 7 + U77. v'0y = 0. (42c)

To investigate Jupiter's empirical basic state (1) we write

U = iy-(43)

where A is the same stability parameter as in the quasi-geostrophic case. Furthermore it is conve-
nient to introduce a basic state streamfunction V which allows us to write

A (V 0) (44)
= (+ or 77= A (

where To is a constant of integration. The resulting linear perturbation equations are

u, (j7Y + fo)(v' - 77) - V' -+ a (-u',u + ,y + + .) (0 (45a)

vt+(Vyy+fo)(U +r/-)+(A -1)Vy(-ut+v=)-( yu')y+¢w•,r+A (-u•+v'y)(V+Vo = 0, (45b)

=0. - VY'+A-vr O. (45c)

As for the quasi-geostrophic system we Fourier decompose the perturbation fields in x and t:

U1[I (z,y,t) = [ (y)exp[ik(z - ct)] , (46)

and rewrite system (45) in the form:

1 - ~- •v + [A_] 0f +]Y+k
-[A-' (V + 0 )+ ] - ["o kA-1(V + 0 )]iy+ [fo±+ Vjy,= c-a , (47a)

k [A-1'( + V0O)•y +A - fo i + (¢ + + (A-' - 1)] ...

""1"• [(Vg + f0) 0 + V ] Cf, (47b)
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The nondimensionalization proceeds in the manner described for the quasi-geostrophic system.

The perturbation system remains the same with all variables being nondimensional and order 0(1)
with the exception of the Coriolis parameter fo which is scaled by the Rossby number:

1 27ruofo- where •" . ('18)6° foL

This system of shallow-water perturbation equations was solved numerically using the Galerkin

method discussed in §3.4. This was achieved by expanding 'i, 0 and ý in terms of orthogonal
functions as in (31), again complex exponentials were used here. Then each of the perturbation
equations were written in matrix form; for (47a) the matrix equation has the form

< -tU(Y)O-(Y)O-nY)> U-+< IN(Y)4m(Y > v.+ < ,,(y).(Y)rm(Y) > ,7 = cu., (49)

where -Yu(Y), -y,(y) and -y,,(y) are functions determined from the original equation. Collecting all the
coefficients into a single vector and combining all the N x N submatrices like < y,,(y)On(y),,(y) >

into a single 3N x 3N matrix reduces the system to a simple matrix eigenvalue system similar to
that derived for the quasi-geostrophic case. It is interesting to note that replacing the potential
vorticity q with potential height q reduces each of the N x N submatrices to tridiagonal form.

4.2 Results

As noted in §2 the shallow-water system supports gravity waves in addition to the Rossby waves
inherent in the quasi-geostrophic system. Figure (8a) shows the phase speed of all the shallow-water
modes plotted against wavenumber for the Jupiter-like case of Ld = 1.0, A = 0.8 and 6 = -0.2.
Examination of this plot indicates that there are indeed two types of waves present; those with
phase speeds bounded by the zonal jet speed 0 <1 c, 1< 1 and those with very large phase speeds
V/• - c,_ <00. The first class of waves are the Rossby waves found in the quasi-geostrophic limit.
The second class of waves are Poincar6 or gravity waves.

Poincar6 waves generally have a dispersion relationship of the form (Gill 1982)

2 f2 + (k2 + 12)gh (50)
(k2 + 12 )

In the large wavelength limit

k2 + 12  0 0 C2 
-- f (51)

(k2 + 12)'

and the resulting waves are known as inertial waves. Conversely, in the short wavelength limit

k2 + 12 __-o 0, c2 - gh , (52)

and the waves the are nondispersive shallow-water gravity waves that exist in the absence of rotation.

These two limits are observed in Figure (8a). In this study it was found that the the Poincar6 waves
were always stable. However, their presence weakly destabilized Rossby waves that had been stable

in the quasi - )strophic limit.



Figure (7a) shows the growth rate plotted against wavenumber for two different values of the
Rossby number; for Ld = 1.0 and A = 0.8. The agreement of the E = 0.01 shallow-water case with
the quasi-geostrophic calculations for the same Ld and A is quite good. For the Jupiter-like case
of e = -0.2 it is seen that at small k (large wavelengths) the most unstable viodes are the quasi-
geostrophic stationary Rossby waves. However, at large k, where the quasi-geostrophic system is
stable, the shallow-water system is unstable to travelling Rossby waves, presumably as a result of
the presence of the gravity waves. The phase speed is plotted against wavenuniber for this case in
Figure (8b) and is observed to approach the maximum zonal jet speed with increasing wavennilier.
Finally, the eigenfunction for the most unstable mode is plotted in Figure (9b)

In Figure (10) the growth rate is plotted against the wavenumber for different values of A,
but with Ld = 1.0 and e = -0.2. Again the maximum growth rate decreases as A increases, but
unlike in the quasi-geostrophic case, Lhe flow remains unstable when A > 1. Figure (11) shows
the maximum growth rate plotted against A for the same case and again it is clear that the flow
remains unstable for A > 1. Thus, there is no simple eztension of Arnol'd's 2nd stability theorem
to the shallow-water system. However, the unstable growth rates are quite small for .4 > 1 and in
nonlinear numerical simulations virtually no growth of instability is observed (Dowling 1992).

Finally, the conclusions drawn from the quasi-geostrophic limit regarding the slowly moving
waves observed on Jupiter (§3.5) remain valid in the shallow-water case. This, is because for the
Jupiter-like parameters the most unstable mode is a quasi-geostrophic stationary Rossby wave.

5 Conclusions

Recently Dowling (1992) presented an empirical relationship between Jupiter's basic state zonal
wind and meridional gradient of potential vorticity. In this study the linear stability of this basic
state was investigated numerically for a cosine zonal wind profile. In the quasi-geof-trophic limit the
basic state was found to be neutrally stable with respect to Arnol'd's 2nd stability theorem with
the violation of this theorem being sufficient for instability. The most unstable waves were always
found to be stationary and centered at latitudes at which the basic zonal flow changed sign.

For the more general shallow-water case it was found that gravity waves were always stable, but
that their presence weakly destabilized Rossby waves that had been stable in the quasi-geostrophic
system. As a result the basic state was found to be always unstable and thus there appears to
be no simple extension of Arnol'd's 2nd theorem to the shallow-water equations. However, in the
parameter regime at which the quasi-geostrophic system was stable the shallow-water growth rates
were weak. Finally, it was found that the numerical results were consistent with the observations
of slowly moving waves on Jupiter.

There remain several areas of further research on this topic. First, in the quasi-geostrophic limit
a perturbation expansion about the stationary cutoff wavenumber could be used to prove that this
wavenumber is in fact a general cutoff criterion. Second, a proof that the most unstable quasi-
geostrophic modes are stationary could be done. Finally, the complete analysis could be done for a
more realistic basic state zonal wind profile.
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Figure 1: Slowly moving mode 10 Rossby wave observed on Jupiter at 200 N by Deming et al.
(1989). (a) Temperature structure on two successive days. (b) Cross- correlation function used t~o
(let ermine the phase velocity c = 25 ± 33 ms'.
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F.igure 3: Photograph of Saturn's Hexagon from Godrey (1988). The Hexagon is centered in ;1 ""

with peak speed just over 100ms-'. The images of the Hexagon also reveal the existence o(f ;m
isolated vortex on one of its six sides, and the most likely explanation is that the vortex is forciII(
a standing, mode 6 Rossby wave.

free surtace

weather layer: p, U(y)

lower layer: P2, =2(Y) bottom top.)raphy

Figure 4: Sketch showing the equivalence of the "I !-laver" model and the 1-laver model with so4i(
hottom topography. The 1-layer model also shows the meridional variation of the free surface and
bottom topography with the cosine basic state profile used in this study.
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Figure 5: Empirical relationship between Jupiter's zonal velocity U(y) and ,/q2 inferred from the
Voyager data by Dowling (1992).
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Figure 7: Growth rate kci vs. wavenumber k for two different paraiueter regimes. (a) Quasi-

geostrophic and shallow-water solutions for Ld = 1.0 and A = 0.8. Note that in the quasi-

geostrophic limit c = 0 at a single wavenumber given by k = 0.5 as predicted theoretically.

Furthermore, both shallow-water solutions exhibit quasi-geostrophic behaviour with stationary in-

stability at small k (large wavelengths). However, in the e = -0.2 case there is no large k (small

wavelength) cutoff as the presence of gravity waves acts to destabilize Rossby waves stable in the

quasi-geostrophic limit. (b) Quasi-geostrophic solution for the non Jupiter-like parameters Ld = 0.2

and A = 0.8 has c = 0 at a three wavenumbers given by k = 1.50, 2.29 and 2.50 as predicted theo-

retically.
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Figure 8: Phase speed c,. against wavenumber k for the shallow-water system with L£ = 1.0, A = 0.8
and c = -0.2. In (a) the phase speeds of all modes are plotted with tfie C, ,• fo/k behaviour of the
gravity waves at small k being evident. (b) Shows the phase speed of the most unstable mode.
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Figure 10: Plots of the growth rate kcj vs. wavenumber k for different values of A with Ld = 1.0.
(a) Quasi-geostrophic solutions. Note that the growth rates decrease as A -+ 1 at which point
the flow remains stable. (b) Shallow-water solutions for c = -0.2. Unlike in the quasi-geostophic
sYstem the flow is unstable when A > 1, however it is observed that the maximum growth rate is
sinall and decreases with increasing A.
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A Solitary Summer

by Louis Tao

Introduction

Solitons and coherent structures appear in many flows. During the GFD program
of 1981, Christopher Bretherton examined the roll waves in two dimensional Boussinesq
thermalhaline convection and discovered that unstable roll waves near the Hopf bifurcation
point have amplitudes that are governed by the complex Ginzburg-Landau equation. He
then showed that a soliton in this system would eventually evolve to a particular soliton,
i. e., it converges to a fixed point in the amplitude-velocity phase plane. So a train of
solitons eventually turns into a uniform train of modulations. Typically, we can describe
waves and solitary objects ii, unstable situations by amplitude equations and these dynam-
ical systems are what Spiegel (Long Buoyancy Waves, 1981) called the metaphorical minds
of solitons. Here we demonstrate the existence of solitons whose minds contain strange
attractors.

1. Brief on Solitons

Equations which admit soliton solutions are ubiquitous in mathematical physics. They
have led to an industry of mathematicians classifying second order ordinary differential
equations (Painlev6 and others) and of physicists looking for integrable models. The equa-
tions that we are interested arise in shallow water theory (Korteweg-de Vries equation), in
thermalhaline convection (complex Ginzburg-Landau equation-see Bretherton, 1981), in
dynamics of vortex filaments in three dimensions (the nonlinear Schrodinger equation-
see Hasimoto, 1976) among other places. The particular equation we chose for our studies
this summer-the sine-Gordon equation-is a special case of the nonlinear Klein-Gordon
equation, which also can be derived for certain cases of thermalhaline convection (Brether-
ton, 1981). And the principal aim of this summer project is to show that chaotic solitons
can exist in fairly generic dynamical circumstances.

So what is a soliton? It is a stable solitary travelling wave solution to the relevant
equations. Typically, the forms of such solitary waves persist under perturbation. However,
what distinguishes solitons from mere solitary waves is that during collisions of two such
objects, solitary waves interact and dissipate, whereas two solitons interact and then go
along their own merry way.

(For references on solitons, see Ablowitz and Segur, 1981, Lamb, 1980, and Newell,
1985.)
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2. Karpman's Results

Using the inverse scattering transform, Karpman (see the myriad of articles by Karp-

man and his collaborators, Maslov and Solov'ev) derives the following formulas for a per-
turbed sine-Gordon soliton described by the perturbed equation':

OXtu + sin u = ER[u] (2.1)

a u(M) + sin u(0) = 0

where u(0) is the kink solution to the sine-Gordon equation,

u(°) = 2asin-' tanhz + -y7r (2.2)

where z = 2vA = 2v[x - ý(t)], a = ±1, -y = ±1, and ý(t) = t/4V2 + ýo.

dv o'r Cj 0 R[ulsechzdz

Tt =4 -0 00(2.3)

d+ 1 a R[u]zsechzdz

dt = 4v2  8v 2' 0

where v and ý are the slope and position of the kink, respectively.

Here we use a locally known method-two-timing perturbation techniques-to derive
the above formulas.

Essentially, one writes out a perturbative expansion and finds corrections to the soliton
solution at each order; the successive corrections each satisfy a linear equation. We allow
parameters of the soliton to depend (slowly) on time to remove resonances. The time
dependence is determined by a solvability condition. Though the linear equations are

second order, only one of the needed null vectors can be found readily, and this gives us
the amplitude equation for one of the parameters. Then in order to evaluate the other
amplitude equations, we have to evaluate conservation laws (see Ablowitz and Segur, 1981).
We illustrate the utility of this technique by applying it to the perturbed sine-Gordon
equation (2.1).

Expanding u in increasing orders of e,

U = U(0) + U(1) + e2U(2) +... (2.4)

(where u(O) is the kink soliton solution to the unperturbed equation (2.2)) introducing the
slow time variable T = et, and substituting into the perturbed sine-Gordon equation, we
get, to first order in e

1 These are actually the equations in characteristic coordinates. The sine-Gordon equa-

tion in laboratory coordinates takes the form

a2tu - c2a2u = sinu + Rt[u]
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+ t. (0) sin(u(°) +u) = fR[u() + u(1)] (2.5)2t +• (1)) (0 (+ (0R~ ) + RuO

a.,u+°fa+ TU(0) + eu(') +sin u(° + eu Cosu = (2.6)

or rewriting in the variable 0,

j4---2uee + sin u = ER[u] - CUOT (2.7)

At o(e), we separate into linear and nonlinear parts,

- 1 u(1) + u (O) =F() (2.8)
V2ee

where FM1 ) is given by

F(1) R[u(°)] - uOT(0) (2.9)

By inspection from equation, we see that sech 2v0 is a proper solution of the adjoint
problem 2 Lu = 0, i.e.,

Ltsech2vO = 0 (2.10)

where

Lt = +2 a (2.11)

is the adjoint.
Then the solvability condition gives us the amplitude equation for v:

2 In order to define an adjoint operator, we need to situate our functions in an inner

product space and define an inner product:

< 0, LO >=< Lt0, >

where < 0, 0 > is the inner product between vectors 0 and 0. For instance, in our case,
our space has as inner product integration over all space:

0 ,0 >= f 0¢(x)O(x)dx

And knowing the null vectors of the adjoint problem immediately gives us the solv-
ability conditions:

< v, Lu) >=< Ltv,u(M) >= 0

if v is the null vector of the adjoint problem, i. e., Ltv = 0.
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i F(Xlsechzdz = J sechz(Lu('))dz
o•-co (2.12)

0 f (Ltsechz)u(1)dz = 0

substituting for FM')

R[u(°)]sechzdz = uTsechzdz

=[ Z f t 00 sechzdz

= 4arT

and rearranging

d- o [o R[u(°)Jsechzdz (2.13)

dT 4 J-o

which is exactly what Karpman (1977,1979,1981) obtained.

To get the other amplitude equation requires more work. We have to use the energy
conservation equation (obtained by multiplying the sine-Gordon equation in characteristic
form by u.--as Bretherton (1981) did for the Ginzburg-Landau equation). Then expand-
ing, we get a relation between the first order correction to u (i.e., u(1)) and ý, which gives
us the relevant amplitude equation for 6.

We see that Karpman's formulas can only describe the following two component sys-
tem:

v = F(v,•) (2.14a)

which we can rewrite as

;,= P'(v) = f(v,O((v))i, =((v) =(2.14b)

after explicitly solving for 4 in terms of v.
The reason for this is the form of the kink solution:

u(°) = 2a sin-' tanh z + -yr (2.2)

where z = 2v 0 = 2v[x - ý(t)], a = ±1, -y = ±1, and ý(t) = t/4v2 + ýo.
We see that differentiating with respect to the x-coordinate gives us

(o) 4avsechz (2.15)
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and brings out an overall factor of v. Differentiating with respect to the t-coordinate p
brings out an overall factor of vý. There is no way of obtaining a factor of ý because of
the way ý is buried in the argument of the kink function.

As a result of this, we see immediately that using these perturbative formulas, we have
only a system of co-dimension one in which the slope of the kink, v evolves on the slow tCme
scale, and the speed of the kink, ý, passively evolves with its slope. Karpman's formulas
can only describe a dynamical system of co-dimension one! From numerical results we
expect that in the perturbed soliton system (without coupling to another soliton or an
external field) to be of co-dimension two. So how do we show that there is a dynamical
system of co-dimension two in the perturbed sine-Gordon equation? We shall use the
approach of Bogoliubov et al, from normal form theory. This method is a general one. We
shall first start from rudimentary normal form theory.

3a. Normal Form Theory

When we study the time development of instabilities in fluid dynamical systems,
typically, we can put the system in the following form:

atU = MU + N(U) (3.1)

where U denotes the variables of the system (e. g., velocity, density, temperature, salin-
ity), M is a linear operator and N is strictly nonlinear. Usually, we make appropriate
transformation so that U = 0 is a solution of (3.1) (i. e., we are interested in the time
development of instabilities so we subtract out the steady state behavior.)

We now study the linearized problem:

atU = MU (3.2)

with solution of the form 3

U(x, t) = e` t t(x) (3.3)
M-Iý = S4I0

where s's are the eigenvalues of M.
We can classify the eigenmodes of the linear problem by the real part of the eigenvalues,

s, typically functions of the parameters of the system. And the number of parameters we
need to tune to get the values of these s's close to zero (i. e., close to the instabilities we are
trying to study) is the co-dimension of the system. Letting s = 77 + iw. Eigenmodes with
small 1,71 are called slow modes, while modes with large 1771 are called fast modes. We will
assume not only that there are no unstable fast modes, i. e., no modes with large positive
,q, but also that there is a separation of scale between the fast and slow modes. When we
have a discrete spectrum of eigenmodes, we can expand

3 Typically, we can do this if M does not depend on t and at.
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nn

U(x,t) = i(t)0j(x) + Z/i(t)ki(x) (3.4)
i=1 i=1

where 4' are the slow modes and Oi are the fast modes.
When we substitute (3.4) into (3.1), we obtain the following system of coupled ordinary

differential equations

& = Ma + F(a,/3) (3.5)

/=NO + G(ck,/3)

where a and P stand for all the ai's and /i's, M and N are the linear operator that operate
on the slow and the fast modes, and F and G are the strictly nonlinear terms. Since the
eigenvalues of K have large negative real parts (they are, by definition, fast stable modes),
we can solve for /

/3= K- 1 /3-G(a,/3) (3.6)

by successive iterations (starting with 3 = 0).

Typically, the amplitude equations we derive from physical systems in this manner
take the form

S= Ma + r(a) (3.7)

where M is the matrix representation of a linear operator, r is some complicated strictly
nonlinear function of a, and the a's include only the slow modes. The question now
confronts us is how to obtain a good coordinate system to describe the slow modes, i. e.,
to rewrite our amplitude equation as

A = MA + g(A) (3.8)

where M is the same matrix as before (we want to preserve the linear theory), and g(A)
is of some standard form.

We make the nonlinear transformation

a = A + O(A) (3.9)

By substituting the last two equations into our original amplitude equation, we get

A + A.7A = M(A + O(A)) + (r(A + O(A)) (3.10)

subtracting MA from both sides,

g(A) + MA + g(A)L-- = MO(A) + (r(A + O(A)) (3.11)

and separating into linear and nonlinear parts in /
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LO = r(A + Vk(A)) - gaAO - g (3.12)

where the linear operator L in component form is given by

Lij = MkjApOA 6,j - Mij (3.13)

To find our normal form, we expand V, and g in Taylor series in the components of
A. At a quick glance, it may seem as if we have only one equatio,. for two unknowns, 4
and g. However, we only have one unknown (and that is 4); we want to pick a possible
form of g. What happens is that the above equation does not give us a regular solution
for every possible g. We have to place constraints on the possible forms of g by solving
for the null vectors of the adjoint problem. This may seem a little abstract right now, but
we hope the theory will become apparent after the worked example below. To illustrate
the power of normal form theory, we use it to solve for the generic amplitude equation forM=(001

M= 0 0

which will give us the canonical co-dimension two behavior.4 (See Spiegel, 1985.) Then
we show that this approach will allow us to identify the co-dimension two behavior in our
perturbed soliton system.

3b. Amplitude Equations of Co-dimension Two: A Worked Example

Following Spiegel (Cosmic Arrhythmias, 1985), we rewrite equation (3.6)

LO =T-g (3.14)

where

T = r(A + O(A)) - gOAA (3.15)

We expand in a Taylor series in homogeneous polynomials of components of A that
are of the same degree. For instance, writing out the two components of A as A and B,
and letting IJ, M) 5 be the monomial

IJ, M) = NAJ-MBJ+M (3.16)

where the normalization is N = [(J + M)!(J - M)!1- 11 2

And we introduce the Taylor series

or, more generally, in Arnold normal form M =(0 1)

5 We put this in Dirac bracket liotation to suggest that the calculations to follow are
similiar to quantum mechanical calculations.
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00 00 J

0=Zoj =E E OJ=- JM)
;=O J=O M=-J

00 
00 jT o=TJ =E E TjmI,M) (3.17)

J=O J=O M=-J
00 00 J

g =Egi =~ E gJMjJ,

J=O J=~O M=-j
So we have at each order J in the expansion

L~j = Tj - gj (3.18)

And for our particular choice of M,

Lij = MkIALOAb 6 ij - Mij (3.7)
L = BaA (10) 1-(0 10) (3.19a)

A little algebra shows us that

Lt[A23(0)] =0 (3.20a)

Lt [A2J (1) +BA 2 1 (0)] = 0 (3.20b)

At each order J, Lt has two null vectors and 2J - 1 generalized null vectors. The
constraint on gj is that it is not orthogonal to any of the null vectors so we can expand gj
in terms of the null vectors. However, only the coefficients of the two null vectors can be
determined by solvability conditions; we set the other coefficients to zero. Therefore the
amplitude equation for A can be written as

00

0 = B +•a A 2J

= 00 00 (3.21)

:6 E 3jA2 J + EajBA2J-1

J=l J=l

where the aj's and the PiJ's are determined by the solvability conditions at each order J.

We now show that using essentially the same approach we can write out the appro-
priate amplitude equations for our co-dimension two perturbed sine-Gordon soliton.



352

4. The Co-dimension Two Soliton: Theory

We rewrite the perturbed sine-Gordon equation in two component form, separating
the linear and nonlinear terms:

atF = LIP + N(%P) (4.1)

where

.Uu(4.2)1

i. e.,

, (u) = sin u + eR[u]

(u ) + ( sinu - u + eR[u] (43)

0 )+( f(sin u + eR[u])dx(o 1 (.,) + ( sin u - u + eR[u]
=0o 0 u ( f sinu + ER[u]dx)

We make the ansatz

u(x,t) = v(x,A(t)) (4.4)

knowing that from Karpmar' analysis

dv f_ 0
dt = a- R[u]sechzdzd t 4 -0 0

- - [ R[ujzsechzdz

dt 40 + j- 0

Rewriting a = 1/4V2, we can recast the two equations above into

A = (I) = ( 0 1)(I)+ r(,'a) = Ma + r(a) (4.5)

where the form of r is determined by the perturbation. Right away, we know from normal
form theory that we can rewrite the amplitude equation in the form

A = MA + g(A) (3.9)

where A is given by the nonlinear transformation

a= A+O(A) (3.10)

and g(A) is of some standard form (e.g. our worked example above).
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To show explicitly that we have the generic co-dimension two behavior in our per-
turbed soliton system, we combine equation (4.2) and the ansatz (4.3):

=U---- 
(4.6)

=

= (AV.

= (MA + g(A))OAA (4.7)
I = Lý + N(4ý)

L¢+ N(AF)

or rewriting
(MA + g(A))aA6 = Lw + N(4) (4.8)

(MAaA - L)4 = N(4) - g(A)aA(4

Since here the matrix representation of our linear L is exactly our linear normal form
matrix M, we see that this equation is exactly the equation we get for our nonlinear
transformation b in normal form theory (i.e., the transformation to find the correct basis
in our space of slow modes). The equivalence of solving the two problems tells us that we
can constrain the nonlinear terms of our amplitude equations by knowing the linear terms.

Therefore, we know there exists amplitudes A related to our a = ( 2 ) by (3.9)a = 114v2b 39
and that the form of the amplitude equations is that of (3.21) with the aj's and the 3j's
functionals of e and R [u].

5. The Co-dimension Two Soliton: Numc lesults

Now armed with the assurance that there is a co-dimension two soliton, we try to
construct one numerically. We utilize the numerical method used in Ablowitz, Kruskal
and Ladik, 1979-a centered, second order leap-frog scheme.

Physically, we need to put in a perturbation that includes both dissipative terms and
driving terms. We tried a variety of perturbations,6 and, generally, we can accelerate the
velocity of the kink solution. See Figures 1 and 2. This behavior is well described by
Karpman's result as velocity of the kink is passively evolved as a function of the slope of
the kink. However, with other perturbations,' we obtain relaxation oscillation solutions
(see Figure 3). And this cannot be described by Karpman's formulas. Hence, the numerical
result substantiates our theoretical analysis.

6 e. g., R[u] = u., R[u] = u,., R[u] = ut
7 e. g., R [u] = au. + u,
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6. Attempts at a Chaotic Soliton

To derive a chaotic soliton system of the perturbed equations, we have to work out
a co-dimension three system. Because the kink soliton only has two parameters (v and
ý), this is impossible unless we include a second soliton (see Kaupman and Solov'ev, 1981,
and Newell, 1977) or a field that couples itself to the soliton. Theoretically, we know such
a chaotic soliton exists in both cases. In the two soliton case, we get a co-dimension four
system, and the linear part of our normal form is of the form

(010 00

.M 0 0 0 0
M= 0 0 0 1

0 0 0 0)

which is just the direct sum of two co-dimension two matrices.
In the coupled field case, we get a co-dimension three system,

M= 0( 00
000

which is simply a co-dimension two system coupled to a slowly changing field.

It can be shown that the latter is the linear part of the third order Lorenz equations
(Spiegel, 1985):

x= Y
Y= -X 3 + ZY - 07Y (6.1)

#=- [Z + o(X 2 + I)]

which for a wide range of parameters a, f3, and y exhibit chaotic behavior.
We chose to attack the third order problem, and tried to couple the soliton to an

external field as follows:

8 4t' = sin b + eR[V), 01 (6.2)
0,€ ='[0 0]

where V is our perturbed solitary kink and 0 = O(x, t) is the external field. We had many
ideas that we tried briefly during the last week of the summer. One possible idea that
since we can accelerate and decelerate the kink so that it changes directions (see Figure
2), and the sign of the acceleration comes from the sign of our perturbation, we can couple
the perturbation with the external field in the following manner:

R [u] = V), (6.3)

so that whenever 4 changed sign, the kink acceleration would change sign. Numerically,
we observe that singularities tend to develop when we solve the second PDE in (6.2). We
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did not have time to understand this fact. Most of the perturbations we tried did not work
in the way we wanted them to work.'

What we ended up doing was to couple the soliton to an ordinary differential equa-
tion instead of a partial differential equation. A similiar system was studied by Pedlosky
(1980), who obtained the Lorenz equations while studying the finite amplitude evolution
of baroclinic waves in a two layer quasi-geostrophic model. Pedlosky derived the ODE
that couples to the potential vorticity equation by the usual asymptotic analysis of the
unstable baroclinic wave in QG. His uncoupled system does not admit a soliton solution;
however, we may imagine a similiar system in two-dimension thermalhaline convection.
The main point here is that we can show that we can make a soliton chaotic.

So our perturbed equations are as follows:

So= sin V + eR[k, 01 (6.4)

= ES[, 01

where € now depends only on time. From numerical results, we know the forms of pertur-
bation we need to obtain a co-dimension two system; here we can explicitly concoct the
Lorenz system by demanding our ODE to be the third equation in the Lorenz system. For
instance, one possible system of equations (in laboratory coordinates) is:

- = sin V) + -(a. k +± p9tV)) (6.5)
S= -- 1)]

where I is given by
foO

I= (Vb )3dx

And we show the world line of this system in Figure 4 (the space time diagram is shown in
Figure 5). The idea, once again, is to couple the external field in the manner of (6.3). And
if € changes sign aperiodically, we obtain a chaotic soliton. It is too early to tell if this
particular kink is chaotic or not; however, we know from our theoretical analysis above that
the underlying attractor is chaotic (in some region of parameter space). Further numerical
work needs to be done to show explicitly the chaotic behavior, while future theoretical
analysis will be focused on obtaining such a system in some physical circumstances.

8 Steve Meacham suggested that we try the following system:

,9.t, = sin V) + eR[Vi, 41
0 ,¢t = sin 0 - eR€1k, I

which is almost a two soliton system. It bears some philosophical resemblance to Andy
Ingersoll's two Red Spots idea-that there is another vortex underneath the Great Red
Spot of Jupiter and that the second vortex is resposible for the overall dynamics.
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Disks: Just the Place for a Spot!

Phillip Yecko

Abstract

The equations governing a thin accretion disk orbiting a central object are reduced to a shallow
water system. The integrals of motion of this system are used to find conditions necessary for the
formal stability of azimuthal basic states. Linear perturbation theory is used to show that one of
the conditions of stability (that the velocities be sub-gravity-wave speed) is easily violated, but
that associated growth rates of gravity wave instabilities may be small. Numerical experiments
are performed to investigate the stability of basic states (axisymmetric equilibria) and basic states
with superimposed vortices. It is found that the near-Keplerian shear of a thin disk is hostile
to vortices, but also that superposition of a vortex is destablizing to the basic state of the disk.
Possibilites for a balanced basic state that incorporates a large vortex are investigated analytically
and numerically.

1. Introduction

The astrophysical disk is ubiquitous: most galaxies have a disk component; the central engines

of active galactic nuclei are thought to be powered by matter falling onto a massive black hole

via an accretion disk or torus; many binary star systems evolve through a mass exchange phase

that produces an accretion disk; and, finally, star formation (including the formation of our solar

system) is believed to nucleate at the center of a so-called proto-stellar accretion disk in the

process of gravitational collapse. We can think of the disk as an astro-fluid-dynamical phenomenon

responsible for the redistribution of matter and angular momentum in the universe - concentrating

the matter at its center and dispersing the angular momentum as far from the center as possible.

The redistribution of angular momentum this way in an orbital "flow" depends, of course, on

there being anisotropic internal stresses (viscosity) within the disk (Shakura & Sunyayev 1973).

Molecular viscosity, turbulent viscosity and wave interaction provide such stress in a fluid, though

molecular viscosity is negligible for most length scales of the disk. Even in a many-particle disk

system, such as a planetary ring, anisotropic stress can be effected by collisional processes that

extract energy from the orbits. So understanding the fluid dynamics of a disk is essential to

understanding how it may oscillate, whether it is unstable, or possibly turbulent, and what its

turbulent structure would be. By analogy to Jovian systems (MacLow & Ingersoll 1986), laboratory

experiments with rotating fluids (Sommeria et al 1988) and extensive numerical simulations of
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vortices in reduced systems (Dowling k Ingersoll 1989; McWilliams 1984), we conjecture that the

complementary processes of small scale turbulence generation and vortex merger may produce long

iived coherent structures, like the Jovian "spots," in disks.

2. Shallow-Water Disks

We distinguish those disks which have a dominantly massive central object (accretion disks in

binary star systems) from those in which self gravity is important (galactic disks), and concentrate

on the former. In fact, we assume that the mass within the disk is small enough in comparison

to that of the central object that self gravity can be neglected entirely, and the central object is

included as an external gravitational potential.

The equations governing the conservation of mass and momentum for an inviscid disk are:

a- + V. (pv) = 0, (2.1)
0v ~VpI

O- + v Vv- - V49 , (2.2)Tt P

where GMo

R
represents the gravitational potential of a point mass Al0 at R = 0 and the fluid is assumed to be

barotropic:

p = p(p).

This description is valid as long as any ionization effects can be included in the barotropic equation

of state and the fluid velocities are non-relativistic.

The outer surface of the disk is defined by its thickness h(r, , t) where we have now adopted

cylindrical polar coordinates (r,0, z) as shown in figure 1. We immediately make a distinction

between vertical and horizontal lengthscales (H and L), and define their ratio: E A. In a thin

disk, E is a small parameter.

The equations (2.1) and (2.2) should be nondimensionalized if we hope to bring out the

dominant balances. The nondimensionalization of (2.1) shows that the vertical and horizontal

velocity scales (W and U) are related by: W = ell. The dimensionless equations for the velocity

components (u, v, w) are:

O- + -4r(pu) + (pO + (pw) = 0, (2.3)

OU Ou Vou O a 9 V3 V0 ®R g

01 + u r + Tr-TO + w T r = p Or (2.4)
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Ov Dv v 9v Ov uv a Op J34949O•- + • +W- + + =-- -- (2.5)
t Or rk ~Z r pr a r~ (2.5

The scale separation is more apparent in the vertical momentum equation, which reduces to hy-

drostatic balance to 0(, 2 ); neglecting small terms it is:

&Op •O4'
S+ 00-1-= 0. (2.6)

The momentum equations now contain the dimensionless parameters:

S92

p.1 2  U2

where c. is the characteristic speed of divergent waves (usually sound, but in shallow water theory,

these are the surface gravity waves); and:

GM,
LU

2

But the choice of /3 = 1 just corresponds to scaling the horizontal velocity by its Keplerian value

at r = L, so we adopt that. It would clearly be fortuitous to introduce the enthalpy:

VE = -Vp,
P

where we are free to incorporate the parameter a in the definition. So the vertical momentum

equation can be rewritten: 19.F
S= 0, (2.6')Oz

where Y is therefore the z-independent "combined potential" defined by:

Y := E + $9 I

Since the pressure, and therefore the enthalpy, must go to zero on the surfaces of the disk, F can

be found immediately by integrating (2.6') and applying that boundary condition:

1
F. = $ 9 ([r,h(r,k,t),t] = - +

(r2 +t h2)J

Since A is small, F can be separated into two terms: a purely radial term representing the gravi-
r

tational potential on the z = 0 midplane i; and another term representing the midplane enthalpy

e associated with the pressure produced by the local vertical gravity acting on the local total

thickness. h2  1
F=--- -e+4•

2r 3  r

Since Y is independent of the vertical coordinate z, the horizontal components of the momentum

equation therefore have no vertically dependent accelerations. Disks, because of their thinness, are
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therefore describable by a variation of the standard shallow watcr approximation (Pedlosky 1987).

Following that derivation, we assume that since no vertical variations of velocity can be induced,

there will be none if none were pre-existing. Unlike standard shallow-water theory, the fluid in the

disk is compressible, but if we introduce the vertically integrated surface density:

a:J p dz,
h

then the momentum and continuity equations can be vertically integrated to give:

0a+ 0 (au) + 1 a-(av) = 0, (2.7)
Tt jr- rT

OU 9 Vu Ou v2  8 O7Tt7 + u•+ = -,(2.8)
r 0, r (9

0v V v 9V OV 0 UV I OY
- + +- +, (2.9)

09 Or r~c r r 045

This description is incomplete until we relate a,h and e. Midplane enthalpy e has already been
h 2

identified with 21-3, so if we specify the polytropic function p = Kp', the definition of a can be

directly integrated to give the relationship:

a = Ah'r- ,+1 (2.10)

and therefore:

a = A(2e)2r5 , (2.11)

with the ersatzen: 1 := and

A(:= X(1-x2) dx ,

introduced for convenience.

In what we call basic state, we assume that the disk has only an azimuthal circulation. This

may seem strange, since we stressed that disks are important because they have a radial flow to

carry material to their centers, but this flow is substantially smaller than the angular velocity.

The radial is commonly thought of as a secondary flow induced by (and therefore proportional

to) the viscous stress, although what created that flow is not specified, and we have been treating

the inviscid case so far. The equilibrium structure of an accretion disk describes a balance among

the central accretion, injection of external material and energy dissipation. A quick analytic

calculation will show that turbulent stress associated with the azimuthal basic state does indeed

produce negligible radial infall and this is further verified by the evolution of the numerical models,

so we neglect u.



367

A basic state (quantities endowed with overhars) which is time independent, non-radial and

azimuthally symmetric is then:

v a + -, (2.12)

This is simply a relationship between v and e such that one is determined, but the other is free

to be specified. Because a disk is just a big azimuthally circulating flow, we can think of it as

a particular vortex whose velocity profile satisfies (2.12); in oceanic terms, it is a self-contained
vortical layer which outcrops at the outer edges of the disk, if such edges are specified. We find

th•.- the (vertical) vorticity of the disk is:

(=i.x v=(= - (rv)- 09) (2.13)r (Orr 0

which obeys the conservation law:

+ V.((v) = 0; (2.14)

(2.14) is combined with (2.7) to express the conservation of disk potential vorticity q:

dq = (- )=0. (2.1.d)

As in the shallow water equations, we can identify the energy that is conserved by the system by

forming 1 [u. (2.8) + v. (2.9)]. This construct reduces to:

T o (U2+V2) +/--e+Dg + V. vo (U2+V2)O+e+ =0 . (2.16)

The form of (2.16) defines a global integral of motion E for any disk with no net momentum flux

through its edges (by virtue of the vanishing divergence upon integration over the area of & disk

with no flux through its surfaces):

E := JJ dE = constant. (2.17)

The quantity C, appearing after -L in (2.16), is therefore the energy per unit area of the disk, and

it is seen to contain the kinetic energy, the energy of the total potential c and the work done by

the internal stress accociated with e. This is made explicit by rewriting it:

o= 2(U2 + V) + l+_ 2 e 1(2.18)



368

3. Formal Stability

Since the prescription of time independent basic states simply involves a relation between v

and c, we are concerned that many choices of (f), e) may not be stable. To follow the variational

method of formal stability analysis used by Arnol'd (1965), we first adopt the idea that stable

states lie at local minima of the surfaces (in the Banach space of the field variables) of the integrals

of motion of the system. Stability is therefore ensured by the condition of a local minumum of an

integral of motion S and a minimum is identified when all variations from it are positive:

AS > 0. (3.1)

By expressing S as:

S := E + AJ , (3.2)

we can include in the variation the constraint that some function J of potential vorticity is also

conserved. (Since J is still unspecified, there is really no need for the multiplier A, but we have

included it anyway.) Alternatively, S can be thought of as some analog of action for a fluid that

conserves total potential vorticity; S itself is an integral of motion since its parts are. We need

to be more specific about the integral of motion associated with the potential vorticity. Potential

vorticity conservation is inherently Lagrangian; it is a material invariant (conserved moving along

with fluid particles). So its integral of motion is given by:

AJ := J J j [q(l)] d3 1 = constant, (3.3)

where 1 is the Lagrangian fluid label variable. We would like to express this integral in Eulerian

form, since we work and think in physical space; so we need to change coordinates from Largrangian

labels to Eulerian variables. The Jacobian of this coordinate change, which can be shown to simply

be a (Abarbanel and Holm 1985), is therefore introduced into the integrand:

AJ := fJ f oJ[q(r)] dE = constant. (3.3')

£ is rewritten by inverting (2.11) to eliminate the variable e:

or1 + a 2 0 1 [1 1
, 2 v.v1 (o)-/+22AKIr. -v2v t-+7-J ,

which defines Xt. Now we replace the variation by the sum of the first two terms, one linear in the

variation, the other quadratic, of its functional Taylor series expansion:

S= 6S + +62 S... (3.1V)
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The condition for minima and subsequent guarantee of stability then requires that the linear

variation term must be identically zero. If b.S were positive for some variat*•n (bVbd) then it

would be negative for the inverse variation (-b, -b) and indicate a saddle . it rather than anl

extremum in S at (9, a). Remember that although we have let J(q) be arbitrary, it cannot be so

arbitrary that AJ won't serve as a Lyapunov functional of the system. So the requirement that

hS vanish just provides information about J such that it can be used in (3.1) and (3.2). The first

variation then, must satisfy:

6(E + AJ) = 0,

or

dE g. + d(.r + H) + d7 _ +j 2 b- + =0, (3.4)

2 d dq I~ .Ix(d)J

where we have used the definition of potential vorticity to relate variations in q to variations in

(v, a):
V x bv - 460'

and integrated the V x bv term by parts to get V x 4i. For each of the integrands to separately

vanish we must have:
_d,. d (.F +.H) = + iv.v = 3(iV, ) ,(3.5)qdJ d 1

and

d2 Jd (3.6)
dq 2 dr = ''3

since the basic state has no iu. Any steady basic state also satisfies:

V.(&) = 0,

so we can introduce a vector potential for the flux &V, whose only component is the vertical one

representing the flux streamfunction 1Q:

= V x A = V x (0,0, %P).

The Bernoulli function B that appears in equation (3.5) is known to be a function of T only

for steady barotropic flow, but the other terms of equation (3.5) are functions J(q) = 3' [J(r)].

Therefore, J' and q are also functions of TI. So equation (3.6) can be given as:

d2 J, d'l
dq4- dqi

which implies:
-- =-7 (3.7)

dqi
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Now we look at tile conditions for the positivity of the second variation of S:

P2S = 62(E + AJ) > ,

which can be directly expressed as:

52(E + AJ) = dE [1.(v)2 + V . bvboa + d (2-+ )(ba) 2 + I -2a(6ra)2 >0. (3.8)
i12 ;Fa( 2 d42

The first three terms in the integrand can be rewritten (Ripa 1991):

u (t + +) (+ v+ 2 + (()+ [d(+.)r(+2+H2)

so that the positive definity of the integrals is ensured by the conditions:

d(.-+?j)_(j2+f,2)] >0,

and d2 3
d > 0

d41
2

which can be simplified to:

" < d(Y- + 71-) ,(3.9)

and

> o. (3.10)dq/]dr

The first condition (3.9) requires that the basic state flow velocities not exceed the RHS of the

inequality, which can be identified with the speed of gravity waves in the disk. The second condition

requires that the potential vorticity gradient of the basic state not change sign except where the

velocity profile itself changes sign, a generalization of Fjortoft's condition for shear flow. These

conditions ensure (they are sufficient for) formal, but not nonlinear stability. Stronger conditions

can be obtained from convexity estimates of S, but that problem is difficult (possibly impossible)

to pose in shallow water.

The stability conditions also indicate that there are two mechanisms that may destablize the

disk: violation of the second condition, which is corresponds to an unstable distribution of angular

momentum in the disk; and violation of the first condition, which suggests the over-reflection

of gravity waves in the disk (Narayan et al 1987). One way to interpret (3.9) then, is that it

ensures that a critical layer is contained in the disk for some part of the gravity wave spectrum.

It is a necessary condition for instability because it guarantees the presence of the appropriate
wave geometry for over-reflection (Lindzen 1986), but insufficient since it says nothing about the

resonant nature of any of the modes. So we look next at the behavior of linear perturbations to

try to better understand tile propagation and instability of gravity waves in disks.
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4. Linear Theory

It is essential to understanding tile b)ehavior of wavelike disturbances, including the l)ropa-

gation and possible unstable growth of waves, to study the problem of linearized disturbances to

some conjectured basic state. If we decompose the fields described by equations (2.7) - (2.9) into

a time-independent basic state plus a linearized perturbation X, := i,(r) + k', then we get the

following equations for the perturbations:

t + 0¢ + (duŽ')+ - _- (4.1)
aOt r 00 Or r 00

Ou' v au, 2iv' Oc'
+ + - + = 0 (4.2)r 00) r -Or

+ + +( +O +'+ o (4.3)

while from (2.11) we can write:

a' = I(r)e'

where the function 1(r) is used to represent A Notice that the coefficient of u' in (4.3) is just the
vorticity of the basic state:

B(r) - + O l _(r-Q),

r Or -Or

where Q := 7 is the basic state angular velocity. Since the basic state, and therefore the coefficients

of (4.1) - (4.3) are functions of r only, we can consider normal mode perturbations obtained from

the O, t transform:

where the unprimed variable label has been recycled for use as the r-dependent part of the per-

turbation, or the so-called perturbation amplitude. With the useful definitions:

V MO mf W -

and
K2 := -2 20B,

we can obtain a single 2 n" order ODE for e:

d--&0 1• -- + 1(r) - - 'r e = 0o. (4.4)

We expect to recover the Rossby type oscillations in the disk from the low-frequency limit of

this equation, and indeed that limit retains the vorticity gradient terms present in (4.4) (first
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term in the coefficient of c). The in.sla hility p)roble•l in this case is analogous to the standard

two-dimensional harotropic insttability problehm, since we have removed the gravity waves in the

low-frequency limit. In the high-frequency limit, we expect to filter the Rossby modes and recover

a variation of the stratified shear instability problem; the stratification in this case is contained

entirely in the variations in the radial variations of surface density:

d-- (K'a <) ('-O. (-4.5)

Taking a, local and high frequency limit, we can also look at (-.1.5) over radial scales small

enough that we can approximate:

;,t CO.I1SIm t & t 0.
dr

In this case, we can find the local dispersion relation, and therefore local p)hase speed for gravity

waves in the disk:

Thus wave speeds are comparable to the mean azimuthal velocity, and the necessary instability

condition (3.z,1 is likely to be violated.

This variety of instability problem has been physically interpreted as the radial over-reflection
of an internal gravity-wave normal mode across its critical layer (Lindzen 1986; Takehiro and

Hayashi 1992). A WKBJ analysis of the modes of this genericized instability problem by Knessel

and Keller(1992) finds the dispersion relation for the gravity waves and further analysis (Balnforth

private communication) shows that the growth rate associated with an over-reflecting normal mode

will be small.

5. Numerical Models and Turbulence

The model equations that we would like to evolve are just a variation of those of shallow

water. The numerical history of shallow water algorithms is deep, but there is one guiding selection

criterion relevant to modelling disks: the finite extent of the disk means that the code will have

to accomadate a vanishing layer thickness. A similar problem arises in layer models of the ocean:

the dynamics often forces layer interfaces to intersect horizontal boundaries, or even pinch off a

layer, producing what is called an outcropping. There has been much progress recently in numerical

models that effectively treat the boundaries of outcropped layers (Sun, Bleck and Chassignet 1992),

so we have adapted this code to treat a disk exactly as if it were a solitary outcropped layer. The

code is based on an energy and enstrophy conserving finite difference algorithm with high order
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flux calculations applied to the outcropping regions (in this case, the edges of the disk) to correct

for overly diffusive fluxes calculated there by standard shallow water code.

It is common in astrophysical problems to assume that flows are turbulent simply because

typical Reynolds numbers are immense, or because a single theoretical model often neglects a host of

processes that are known or believed to catalyze flow instability (magnetic fields, radial ji. material

infall, etc). The standard assumption for (turbulent) disks is that the associated eddy viscosity wil!

S(dominate molecular viscosity by many orders of magnitude and become the quintessential source

of tangential stress and therefore govern the nature of the mass infall and angular momentum

transport. Disk theory further assumes that the disk thickness provides an upper bound for

the scale of action by turbulent viscous stress(Shakura &z Sunyayev 1973), :aying, in effect, that

disk turbulence is globally three dimensional in nature. But we know that vertical motions are

effectively quenched in a thin disk (hence the applicability of shallow water theory), suggesting that

the fluid dynamics of disks is dominantly two-dimensional. Even outside the shallow regime, two

dimensionality is strongly induced by rotation, and accretion disks are rotational objects by their

very nature. So the flow of a disk ought to be dominantly two-dimensional. This tells us a lot, since

we know something about two-dimensional turbulence. First, that the turbulent stucture in the

plane of the disk is independent of its vertical structure. But also, that as the turbulence evolves,

energy will cascade to larger spatial scales as enstrophy cascades to smaller scales, eventually falling

victim to dissipation by molecular viscosity. This is the nature of two-dimensional and quasi-two-

dimensional turbulence. There is more to the turbulence problem than the cascade process, though;

within the equilibration cascade it is common to see unpredictable phenomena. Foremost among

these is the emergence of coherent structures: typically a small number of isolated vortices.

Ileally, a simulation would be able to resolve flow at most length- and time-scales so that
we could numerically evolve an unstable disk, follow the growth of instability and transition to

turbulence and only then follow the turbulent equilibration to its natural end state. Ultimtely, we

hope to perform this experiment with full exploit of computational resources. But understanding

of the Jovian planets (also described by the shallow rapidly rotating regime) indicates that similar

processes produced the phenomena that we observe there, and therefore that large vortices in the

shallow rotating fluid regime are expected. For this reason, we investigate the proclivity of a disk

to contain an embedded vortex stably, in the same way that Jupiter and Neptune are host to "great

spots."

6. Disks as a Site for Vortices

When such large vortices come into being as the end result of vortex mergers, we must pay
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particular attention to the background flow in which the vortices sit. The same is true when

the vortex is thought to persist for long times: merger of vortex pairs and the stability and

axisynmmetrization of isolated vortices has been shown to be a sensitive function of the background

flow. The oval shapes characteristic of many large Jovian vortices are probably the result of the

sizes and strengths of the shear zones in which they sit.

lin the steady basic state of a disk. velocity is purely azimuthal and determined by Keplerian

flow, modified by the presence of pressure in the form of the enthalpy gradient. Even when this

gradient is large, it will scale with the enthalpy itself, which cannot become too large before we

violate the small L' scaling. Thin disks, then, are nearly Keplerian. A sharp diicontinuity in the

enthalpy can still produce a large gradient, but in that case, only over a very small physical extent.

So we expect that no thin disks will have regions (in radial extent) of flow that are known to

nurture large vortices, simply because Keplerian flow has strong gradients in velocity ar -orticity

everywhere. Nowhere does a disk seem to have a flow that isn't hostile to the sta<' .v ' large

vortex. Solid body rotation, for example, would require of (2.12) a very large enth 6 .radient

acting over a large region; clearly such a disk will become "too thick" for the shallow water model

derived here, since it implies large enthalpy gradients over large extent. Alternatively, we could

solve for an enthalpy distribution that produces solid body rotation according to (2.12). In this

case, we get a functional form of c(r) with three arbitrary constants. One must be chosen to ensure

a thin disk; the second can be chosen to represent the outer edge of the disk, ensuring that it is

finite. The form of e(r) then demands that the disk thickness again go to zero at some radius

(the inner edge) which turns out to closely approach the outer edge. So a thin disk must actually

become a narrow ring to have solid body rotation, and a narrow ring naturally precludes large

vortices. So we adopt a straightforward initial enthalpy that gives a well defined torus:

S:= eo[(r- r)(r - r)] 2 (5.1)

The vorticity of the disk (viewed from inertial space) is cyclonic:

Such a disk is mathematically pleasing, but there is nothing to say about its physical likelihood.

Indeed, we find that a slightly unbalanced disk of this type rapidly evolves to something quite

different (figure 2) with a less tapered outer edge. So long as this disk is balanced, though,

it remains stable (always looking like the first frame of figure 2) indefinitely. [In this and all

susequent figures, a disk is shown from the point of view of a rotating coordinate system fixed

with the rotation of the disk at r = 1 (approximately half-way through the disk) after 0,5 and 10

rotation preiods. The contours are of constant surface density.]



375

7. Vortices in Disks

Following the spirit of the stability condition (3.10) locally (but addressing vorticity rather

than potential vorticity to simplify matters), we anticipate that there can be stable anticyclones

in the disk as long as the total vorticity doesn't change sign:

c + 4 ,ortex > 0 .

The vortex is introduced by superposition onto the balanced basic state (5.1). Two different

types of balanced vortex were used: the two-dimensional vortex patch; and the exponential hump.

The two-dimensional patch is also know as the Rankine solution; it is simply the streamfunction

inside and outside a patch of a given vorticity which has a matched solution at the vortex boundary.

ee orter = ' ((p - ) ,

aciVi = -ap

then describes a vortex patch with radius P0, vorticity it and circulation velocity vi.

A series of numerical experiments were run for a wide range of vortex strengths, sizes and

positions using the two-dimensional vortex streamfunction to serve as its enthalpy field in the

disk. Since enthalpy plays the role of pressure, this produces geostrophically balanced vortices.

The unfortunate conclusion is that the strong far-field properties (the external solution) of the two-

dimensional vortex produce a finite amplitude deviation from the basic state that we superimposed

the vortex onto. The initial states then, are significantly unbalanced and strong instability develops,

initially at the outer edge of the disk where the deviations introduced by the vortex are most in

excess. Figure 3 shows the evolution of such a disk.

At the same time that the disk instability begins to grow, the vortex becomes strongly sheared

by the basic state, and eventually separated into two tilted vorticity tongues (visible in the last

frame). Closer examination of these tongues reveals that the vorticity of the initial vortex has

been squeezed from a patch into a ring, although the ring has also been sheared in two. Ring-like

vortices are known to arise as solutions of the two-dimensional vortex patch problem in the case

of small Rossby deformation radius- fast rotation in other words. Keplerian shear is probably

better characterized by the scale of its vorticity gradients than the scale of the vorticity itself. Still,

the deformation radii are small everywhere, so the vortex ring may be the preferred large scale

structure on disks. We intend to investigate this in future numerical experiments.
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To minimize the far-field contribution of a superimposed vortex, the Rankine solution was

replaced by a simple exponential "hump":

evortex = Po ofe 'o.

The outer edge instability incited by the Rankine patch in the previous case is clearly absent now.
and the vortex shearing is more evident (figures 4 and 5).

Strong vortices are sheared into pieces that can be followed, and appear to be more robust
than their progenitor. If there is an upper limit to the size of a stable vortex in near-Keplerian
shear, perhaps we are seeing this scale-selection process at work. Longer model runs are needed
to test this. Weaker vortices are more effectively sheared away, but in the process transient spiral

mode oscillations are excited within the disk (figure 6).

8. Discussion

The shallow water disk equations are shown to have axisymmetric basic state solutions that
have nearly Keplerian velocity profiles. The superposition of large coherent vortices on these
basic states in a numerical mode has verifed that the basic state velocity profile is hostile to such
Jovianesq "spots" because of the rapid radial variation of the background shear. The evolution
of the models shows exactly how vortices are sheared, stretched and bent by the basic states
and suggests that smaller vortices, perhaps more ring-like, may persist. But we do not know to
what extent these specific cases can be used to generalize, so we cannot say with certainty that a
vortex patch will be sheared into something that approximates a maximum-extent steady vortex
in near-Keplerian shear and curvature. It is also verified that vortex superposition is an inherently
destablizing technique for finding a stable disk with a spot. As we are actually looking for a vortex
embedded within another (albeit special) vortex, any steady solution ought to reflect this vortical
bi-polarity. The model was also run as a semi-relaxation code in which the material of the disk
was allowed to redistribute itself to match the combined flow around both the central object and

a nearby large vortex, and in fact, produced just such an asymmetrical disk (figure 7).
The asymmetric equilibration in this case is further indication that a disk-vortex system is too

distant a departure from a symmetric basic state. The problem that bears further investigation,
then, is the the time-independent basic state solution of a disk with a vortex, perhaps related to
the steady solutions of vortex dipoles and modons. In this case, a steady dipolar disk would have
approximately Keplerian flow around the central object coupled to opposite flow around a large
vortex. The companion vortex must be counter-circulating (anti-cyclonic) if it is to coexist rather

than merge with the central object vortex.
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A.

zq

figure 1
schematic of a disk with surfaces = h(r, 0, t) and inner and outer edges r1 and r0
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Vil I

figure 2
equilibration, of anl ~II'lnianced( disk

figure 3
evoluitioni of a Rlankine patch
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b",

figure 4
exponecntial1 vortex at r 1 25

figure 5
exponential vortex at r =0.5
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figure 6
weak expoezitial vortex atit r

figure7

material relaxation dipole
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Shear Flow Instability Near Froude Number One
-Theory and Experiment

Qingping Zou

Scripps Institute of Oceanography, La Jolla, CA 92093.

"WIhen the stream is narrow the waves which diverge from the opposite banks meet and
cross in the middle , where the resulting , stationary mounds of water are sometimes
higher than either component, even at the place of origin by the bank."

From oceanwaves by V. Cornish (1934)

Abstract

The linear parallel shear flow instabilty in water of finite depth is addressed theoretically
and experimentally. Following lloward (1964), the semi-circle theorem is rederived for this
problem. To obtain an explicit dispersion formula, we introduce the matched asymptotic ex-
pansion method (MAEM). As an essential supplement to Satomura (1981), the neutral curve
F. vs k is obtained numerically by the Newton-Raphson-Kavantochi method for intermediate
k and extended to k < 1 and k > 1 analytically by MAEM, and it is shown that Fr > 1 and
F, > 2 are the sufficient conditions for instabilty in Satomura's case I and case II. The vertical
structure enters the problem in the second-order equations. From the solvability condition of
these equations, we derive the second-order correction to the phase speed . This might explain
the existence of the stationary unstable mode in the experiment. The case of single wall is
simulated by a two layer flow in a rotating cylindrical tank. The experimental results show
that the critical Froude number is located within 0.75 ±-0.25 and suggest that the shallow water
theory is not applicable here.

1 Introduction

Problems of large Froude number have been of limited interest for oceanographers and geophysi-
cists. However, it has been found that this Froude number can be rather large in some stratified
geophysical fluids.In addition, the shear flow instability due to velocity divergence could be essential
to understand the atmosphere of the earth as well as the outer planets (Matsuda, 1980). To sep-
arate the inflection point instability from the divergence one, Satomura examined the linear shear
flow instability in shallow water. Ilis results were further interpreted by Shin-ichi and Hayashi
(1992) in regard to the over-reflection effect. In 198-1, Narajan applied Satomura's theory to differ-
entially rotating systems such as disc galaxies, etc.; moreover , he defined a conserved action that
has opposite signs on the two sides of the "co-rotation radius", where wave is stationary relative
to the local fluid. Lindzen and Barker pointed out that the wave over-reflection is necessary in
order to obtain normal mode instability in a plane parallel shear flow and that over-reflection is
the essential mechanism for both inviscid and viscous problems.



Nevertheless, all these theories are based oii the shallow water thiory which is not necessarily
valid in our case. Actually, the shallow water theory results in tile semi-circle theory prohibiting
the stationary unstable modes , moreover, the vertical shear may interact with the gravity waves
aniid destabilize them. To derive the first order correction fromi this effect, we assunied small aspect
ratio < = I and then asymptotically ex)apided the e(luations and boundary conditions about
P.'he second-order correction to the phase speed is derived from the solvability condition of the
second order equations.

li § 2, the experimental setup) and method are discussed and the results are compared with
the theory. In § 3, we derive the eigenvalue equation of the along stream velocity u, the MAEM
solutions and finally we extend the theory by including simall vertical variations.

2 Experiment

2.1 Gutter Wave in a Sloping Channel

In 193.1, V.Cornish described in his book occanl rar'cs about the stationary wave in the middle of
a narrow stream. During a rainy day, one who's as observant as Melvin Stern may also see these
stationary waves in a narrow inclined gutter. If one looks further down stream, he will probably
find roll waves travelling forward.

The gutter wave experiment was conducted in an inclined channel shown in Figure 1. The
upper end of the channel was connected to a reservoir and the lower end to a sink. We kept the
free surface of the reservoir about 1 cii above the bottom of the channel by controlling the flow
entering it. After that, we observed waves diverging diagonally from the walls , interfering in the
middle and forming herring-bone like stationary patterns that covered most of the channel. These
regular stationary patterns extended all the way down stream to the sink. The typical water depth
was about 6 mm, the wavelength was estimated at about 4 mm and the velocity at about 40 crm/s.
Therefore, the Froude number Er was about 5 to 7. One may argue that these are just ship waves.
Nevertheless, if one dips his finger into the running water, lie will find the ship waves fade away
within a couple centimeters, in addition, there was no distkurbing source on the wall. Even there
was one, it could not have generated the very regular pattern we saw. So what is the mechanism
producing these stationary waves? Maybe the shear flow instability .

One may note that some other factors such as the capillary effect and the bottom viscous effect
also entered the problem and complicated the physics. Besides, this experiment made it hard to
obtain small Froude number which is important to find the critical Froude number for instability.
To avoid these disadvantages, we design(d another experiment described in the following section.

2.2 Gutter Waves in a Rotating Cylindrical Tank

2.2.1 Experiment Method

The second experiment was carried out in a cylindrical tank of 22 cm in radius and 40 cm in depth
(c.f. Fig 2) on a turntable. The tank was filled with salt water up to 20 to 30 cm. The intrusive
fresh water was very gently introduced through a sponge inserted in a block of foam floating on
tile surface of the salt water. We used the shadowgraph technique in our measurements: a beam
of parallel light shone down on the tank. Video records of the shadows of the interfacial waves
at the bottom were taken with a 35 rini video camera mounted about 30 cm above the edge of
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the tank.The waves of iiiterest were prodducied on tle iiLterfa'ce between layer' as the taihk spuil up i
froz rest. The rate of rotatioln was itteasutied by couLittiug the time interval for 5 cycles. DIata were
obtained by reviewing the videotape : the wavelength A, the oblique aiighc of the wave crest relative
to the wall 0, the extent of the wave pat terni iin tile radial directioli II' and tile lasting timile (of the
regular stationary lpattern '1ý. The lenigthi mieasuremienit wvis calibrated by colilmiparison with a 6 (ciii
tapes near the bottom of the tank. The nileasuiireieiit data, ale estimilated to be withii ±-1.5 Ipercelit.

After each run, tile top layer of firesh water wvas siplioiied out. Sonei salt was added to tile
maintaini tile delnsity of the salt water ad tiitt new il lix Ule w•ws sti'rred tliiroulghly before ilutrodlicinlg
a new layer of fresh water..

2.2.2 Results ail I)xcussions

'[he - suimmary of tile wave characteristics amll tile results 110oil 2: experi'illinlts are giveil ill table 1
through 4 where 1i1 is tile upper layer depth, l11 the lower layer depth, /1,= -1•_11_2-+ tile elfl'e'tive
depth, Ps the density of the salt water, V the rotating velocity. Fig 3a to Fig 3e show the se(Iluenlce
of snapshots of the wave behaviollr ill the exlperiiieit 8 ill tablel. Fig 4 illustrates the relationi
betweein T1, A, IV alih I,;. of Tablel Ito Tabble.. F"romll Fig .11), we c.all derive the empiIrical relat ion
of A vs Er froii the least square fit as:

A

therefore,
l",. <x -

which is analogous to the thIeoretical results (c." eqiatioli ('19) ill §.3.1-).
Fromii both Tablel to 4 ali( Fig 4, we observe that the mieiasulred data not only depend on tile

F'. liit also oil the effective depth I/,. This result strongly sliggests that shallow water theory is
not valid here. Following Table 3, we call estimate the crit.ic'al Froude nuiimber for the instability at
0.75 ± 0.25. It is also worthwhile to mllenltioln that the wave appeared about 0.5 s to 1 s after tile

tiurlntalble started. According to E. II. edeueyer 19(6-I), the sp)ill -il) tillme is

0.1-13 ( )2•r

where T, 1?, IL, and It, are the roptatilig periold, the radius of the tank, the depth of the water
anld the Reynolds ininber respectively. The typi cal valuie of Ts ill oir experiiellt was about 40
s. Therefore for the first 10 s, we (aill neglect the rotating eflect as well as the Kelvin-liIlhinhotz
instability caused by the vertical shear. As shown ill Fig 3, waves formed near the wall with crests
almost l)erpendicular to it, extenided rapidly toward the ceitre , the wave crests became oblique
relative to the wall. As thle patterils developed filrtheii, it became distorted and turbulent nmotion
grew outward from the wall, coexistinig with the regular wave patterns ii thle middle of the tank;
finally the radial wave re-appeared alid tile Iliid vwent back to regular motion.

For large lroude nimlnber, we obiservetd ilileiiiilielit behaviouir of the wave pattern, niamely, it
appearedl , was replaced by tile tur'iilhellt illlioll , and tlheu leapplleared agaiii for a short time aidi|
so oi1. Oile of the mllost spectcular chiara'terisi ic olf the wave we observed is its statioiariiliess
with the wall. This was coii lict wvi ti what the (e11ii-til'rcle theoremii lpredicts As a matter of fact,
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the wavelengths in tile experiments were the same order as the depth, moreover, the thickness of
the shear layer next to the wall was about a couple millimeters, which was muci smaller than the
depth and the wavelemgth. Besides, the variation structure within the shear layer will decrease the
est imated I•, - 200 to It -, 50 or so. Accordingly, the viscous effect was more important than
we expected. Also, tile thickness of the thermocline hT, between the two layer varied at each run.

That might cause tile real Froude ii inulber to) lbe larger than tile one we calculated.

3 Theoretical background

3.1 Shallow Water Theory

We consider the stability of a l)arallel )lane flow u(y) along the x-axis in shallow water. It is
advantageous to use dimensionless variables. The scales are

(aXy) I- (.y)/l, - tU,,L.

U -- ,l: (a,,,,) -- (u. v)/Uo, (I)

Th -- h/l 1

where (it, v) is the infinitesimal disturbance in the (x, y) directions, h the free surface displacement,
L the horizontal variation length scale for the niean flow, Uo, the velocity scale of the mean flow
and II. the depth of the water. The normalized linear equations in the ideal shallow water are

O 0 a d-U IOh
0 t Ox (ly T- 2 Ox (2)

O 0 U Oh

Ot+- Ox) - FOy' (3)
0 0 0 0v

= -t )h+ -+ 0, (4)

where F, = U is the Froude number. We assume the variables in the above equations take the

form of an infinitesimal wave along the x-axis:

v "(y) ' •(5)
h1 11(y )

The corresponding reduction of (2) and (4) yields

(h" -1
ik(U-c)u+vd Y - Fikh, (6)

-lI
ik(T - c),, - 2 h ,, (7)

ik(Ti - c)h + ika + v'V = 0. (8)
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The combination of the equations (6) to ( 8) gives us the potential vorticity conservation equa-
tion: . d

U Y - i/ k v - /I = 0.( )
'ly

BY manipulating the equations (6), (7) and (9), we derive the eigenvalue equation for u:

d2"u + k F;l./ -(Ti - 10 u = 0. (10)

Assuming the B.C at y = a and y = b are

U C', U (Y a),
'b U, (y= b), (11)

where (a and Cb are constants, Ca, Cb = 0 correx:ponds to no-slip condition, and Ca = • '-) Cb =

-- no normal flow at the boundary. For linear shear flow where ! = y, the equation (10) can
P, b-c)
be transformed into a parabolic cylindrical equation, which has solutions in expansion forms. Nev-
ertheless, we will use the MAEM in § 3.2 to derive the explicit dispersion equations.N

Following Howard (1964), we multiply the above equation with u*, the conjugate of u, and

intrgrate from boundary y = a to y = b, then we have

dy + k2 {F, 2  - 2c,.u + r } dy 0, (12)

C, C')1u12dy = 0, (13)

where Cr and Ci are the real and imaginary part of c. Making use of the (12) and (13), we have

0 Žt J iin,)(it - h,...,) l•l•,dy (14)

i_2+C Utin inx IuI= J 2 I12d(y - (,,rn 1,,+ ~u,,,)],< 11112 Sy + ui,,,i,,umaxJ Jul dy

= [2cr - (•,n + U•,ax)] J)fi luff dy + (-4 + 4t- ,ri,,,,a,)J

= Urnax 2 + C22 --- -- -- ) ] 1 lU1 y + lu,,l ,

2R1 2 2 ] k2 F,2j

Accordingly,
iliax aflil 2 2 < Unjax -- rii n 2

(cr ,2a ) + u,,i,) + i- 2 (15)

Thus, the complex phase speed c of the unstable mode must lie within the semi-circle in the upper
half-plane which has the range of the mean velocity as the diameter. Stationary unstable modes
are therefore impossible.



3.2 Matched Asymptotic Expansion Method (MAEM)

We consider the following equaliou

dY2

Suppose that K(y) has zeros at y = y_ and y - y+ with it maximum in between and

IV'(Y)l << It;(y)l2

holds everywhere except in the neighbourhood of thie turning points. By NIAEM, the solutions to

this equation can be written as

(1) y•(y_

9- <-

i I 7r. !

u(y) = 2a (-tc(y))- cos( (-K(y))2dy - i+ 3T(-tc(y))- cos( 2ydy +y-), (17)
94

(2) ly - Y_-I < < IK'(y- ) -13

.u(y) = 2av/7r'(y_)- Ai [K,(y-)3(y -y-) +,'T/rvK,(y_- 6Bj 10(y-) 3(y-y-) , 18

(3) Y- << Y << Y+

Y+

-f NO~)) dy -f (K(y)) Idy

u(y) = ((K(y))- e C - +.i3(t(y))-•e 1 , (19)

(4) 1Y - Y+I << IK'(Y+)I-31

•(y) (•,7 (-'(y+)-•Bi [K'(y+) I(y - y+) + 2jZ/¢7 (-K'(y+))-•A •(+•y' y),(0

(5) Y >> Y+

y y

u(y) = ar(-K•y))-4Cos( (y)))dy + -r + 2j(-K(y • cos( (-K(y))2dy - 7), (21)
I 1 4

Y+ Y+

where
Y+ te i oms f r m

fIn the following sections, we will appl~Y these solutions to some specific problems.
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3.3 Case I Two Walls (c.f Fig. 5a)

The boundary conditions in this case correspoiid to no normal flow at the walls:

It + FUY - c)i Y (22)
y = -1

Let's go back to our original equation (10). The corresponding K(y), y+ and y- are:

(y) = - [( - , (23)
1

Y+ = C+r, (24)

Y- = C- 1 (25)
Fr

The condition for valid MAEM becomes

2F2(y - c) (7_-)

Also, we have
K'(y-) = -K'(y+) = 2k 2 Fr

We note that the equation (10) and B.C (22) are symmetric under the transformation (c,y)
(-c, -y), therefore, the eigenvalue is symmetric about c = 0, that is

k 2 (c, F,.) = k2 (-bC, Fr)

Let's expand the L.II.S and R.Il.S of the above equation around c = 0:

k 2 (6c,F,.) = k 2 (0, Fr)+ ()c= bC + 0(k) 6C2  (26)
Oc 0 2C

k2(-bc, Fr) = k2(0, F,r2) 0C + 02-(k- 2 )+--
(c c=0 c= L(

as b•c -- 0, the R.H.S of the above two equations equal each other, which gives us

0(0) =0. (28)

It follows from (28) that

k= [ F) T2(0- F (29)

The ;-I_ has fixed sign, therefore , the bracketed part has opposite sign,while c is either

imaginary or real number, on the either side of the neutral curve k2 (0, Fr). On the other hand, for
c = 0, u(-y) = u(y), hence,

u(0) = 0 (30)
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From (2-1) and (25), we have,

Y+= = -(31)

Plugging (19) into (30) provides a = 43.

Case a) F, • 1

According to (31),
y= 1 -y+

holds here. we can apply (20) to the B.C (22) at y = 1. By further assumption r << 1, we get

(z)K'(y+) + F,2Ai(z) = 0, (32)

where

Z = K'(y+)3(y - y+). (33)

The above equation can be rewritten as

Aý(z) - r , Ai(z) = O(k-3) z 0 (34)
(2k 2 Fr)3

Therefore
z=-1 at y=1 (35)

which compared with (33), we find

F=1+ (2k2) (36)

Caseb)F >> 1

Because y = 1 >> y+ here, the combination of the (21) and (22) gives

tan { (-(y))d- -= (-K())- 1 K'(1))(

therefore

(-.(y))I dy- 4 = (2n + 1) (n =0, 1,2,3-..). (38)

We combine the above equation with

_ r

2~~~~ [P222 kF, *,
(-n(y))L dy k k[~ 21] 1dy -- (1--2) 2-•- (39)

y1+ 1.2_-

and obtain

F, = (271 + 3)irk-1  (40)
2
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For the first mode n = 0. we have

k". = 3rk-' (41)

Please refer to Appendix A for Case c) c X o. By Newton-Raphson-Kavantochi method, the neutral

curve 1,, vs k is also calculated numerically froom the original equation (10) and the boundary

condition (22). Fig 6 illustrates the comparison of this result with the analytical asymptotical
bahaviour by (36), (41) and Satornura's. We can see that they coincide with each other very well.

3.4 Case II Single wall (c.f Fig. 5b)

In region y < 0, the equation changes to

Uyy + 0 (J'C2 - I) U = 0 (42)

Physically as y - -oo, u should be finite and the wave can only propagate in the opposite y-axis
direction, in other words

u = con.st • e'•Y, (43)

where -ikV/Frce2- I c > (4

R =K(O){ k - -_~~_ c <_'F, (44)

The variables v and h should be continuous across the interface y = 0 of the rest fluid and the

shear flow. Therefore, we have

u(O+) = u(O-), (45)

uY(O+) = uY(O-). (46)

From (43), we get

u - ik) =F-kJ lu(=- c _ - (47)u (O-) = kv/1- F'c7u(O-) c <

Combining (47) with (45) and (46), we have

{ -ikVFc-i u(O+) c Ž (48)
uY(O+)= kx/Vl - 7c7u(O+) c< 1

Please see Appendix B for further details.
According to (113), the imaginary part of the phase speed is nonzero for c < - therefore by

using similiar approximation to case a) and case b) in the last subsection, we derive the following
asymtotic behaviour of the neutral curve:

Fr = 37rk-' for F, > 1 (49)
2

F, = 2 + for Fr , 1 (50)

Similiar to the last subsection (3.3), the neutral curve F, vs k is also calculated numerically from
the original equation (10) and the boundary condition (45) and (46). Fig 7 shows the comparison of
this result with the analytical asymptotical bahaviour by (49)and (50) and with Satomura's result.

We note that they coincide with each other very well.
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3.5 "Deeper" Water Theory

The general equations for the incomp r essible noiviscous flow of finite depth is

Iall OU Ou 0u
Tt + UT + 0j- + U- = -(51)

-7+ U + 'C + wa = - •, (52)

Ow 0w OW 0 OWa0-7+ U-• + •--VT + W -P"' (53)

SuX + V +w = 0. (54)

The corresponding boundary conditions at the surface and at the bottom are

U , = h + U,-7. + o z = 1(55)
P = gh

Iw = 0 z=0 (56)

Nondimensionizing the above formula with the following scaling and linearizing it

I(x,y) - (Lx, Ly), I - bt,

h - / hi!, z - zHl, (57)

I p - ll

we have

U - hpx' (58)

a +0=) Ov 1 (59)
(at Ox ) r1

2 a, 1 (60)

and the boundary conditions

I = 3 ox z=1 (61)

p =h J 61

I w = 0 z =0, (62)

where the Froude number Fr and aspect ratio 6 = N We assume that the variables in the

above equation can be written as

e q(x, y, z, t) = q(y. z)ei(x-ci)

h except
Ih(x, y, t) h t( y)(i(kr-ct)
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and both the anipitude q(y, z) and the phases speed c can be further expanded in the following

series:

q(y, z) = q(c"(y, z) + 2 q(2)(y, z) + (63)
c =c() + 62c(2) + .... (64)

Plugging the above formula back into the equations, linearizing them and separating by the powers
of 62, at O(6(0)), we have

ik (Ft -c(u)) ,(°) + v()d- = -- .ikp(°), (65)

(1y F,

ik (u- c(U)) v(0) =-T2 (0 (66)

O(o) = 0, (67)

iku(°) + Vt4) + w -°) = 0, (68)

and B.C
a Bw() = (V - c(0))ikh(0 ) z (
p(O) = h(O) 5 z = 1 , (69)

w(°) = 0 z = 0. (70)

at 6(2), we have

ik (-i c(°)) u(2 ) +- v(2)d-it = - 1--ikp,(2) + c(2)iku(°), (71)
dy F,2

ik (u - c(°)) V( 2 ) = _1I_,( 2 ) + c(2)ikv(°), (72)\ ] -- ~ Fr2 Vy -

r z

iku(2) + V(2) + w(2) + 0, (74)

and the B.C
W(2) (- c(°))ikh(2 ) - c(2)ikh(°)

- }z = 1, (75)
p (2) h(2) Iz(5

W(2) = 0 z=0. (76)

Integrating the (70) from 0 to 1 and using B.C (75) and (76), we derive

S= (iku(o) + V(0) z (77)

p(2) (z) h it(' + ikF,2 (f - c(°)) (iku(o) + v))1 2 (78)
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Integrating equations (71) to (7.1) froin 0 to 1, we get

i- & 2) +2 -ik -(2)
1 '12 i + c(2)Iku(0), (79)

(i- cAu)) ikbk2  - A2) + c(-)ikk,(o), (80),7".

iki&(2 + ,(2 ) + U,- c°)ikh•( 2 ) = ct 2)ikh(°). (81)

The variables with a tilde denote the vertical integral of that variables, for convenience, we drop
the tilde in the context. Consider the mean velocity profile u = y, The combination of equations
(79) to (81) gives us the potential vorticity conservation equation

U (2) - ikt ,() -_ (2) = 0. (82)

Compared with (77) to (78),the equations (79) to (80) can be rewritten as

V(2) -1 (

- C(0))) U•) + ik - + (=(o)+ /I 2 +( 0 )), (83)

ft- ()) (O) 2  = -1 h(2) + (gO) + C•2)ikv(o)), (84)

where

go(0) -k (. _ )) (ik0, ,o) + ,o,) (85)

Using similiar method to that in the shallow water case, we eliminate the v(2) and h(2 ) from the
above equation and obtain the following ODE for u(2)

+) + k2 [F• (fi-c(°))2 - (86)

=~ F22 f( -c(O)) g(o) + g(O)] + 2k[Fk2 (f _ c(O)u(O) + (k2 + F a)ikv()_ - k2(O)].

Multiplying the above equation with u(°) and integrating it from boundary y = a to y =b, we have

b

[11(0)11(2) lL(O)(2)]_b + ,o(2),,<(,) [G(O, + C(2)G, O)] uoody, (87)

where
d 2  2Si= • +k 2 F,? ic°)2 1,(88)

rtdy2 + IF f ()(8

and

Go)= F, [k2 ( -_ C(U))•0) + g(O)], (89)

G(o)= F, 20 (u - c(_)) 11(o) + (k2 + F,2),,) -.. ,o k2 u_0). (90)

The L.t.S of the above equation is zero, hence,
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b

C(2) a b(91)
]'G'(O u(0)dy
U1

According to the above second order correction of the phase speed, we conclude that semi-circle
theorem is not valid here.Therefore, stationary unstable modes may exist in "deeper water".
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Appendix A

Case c) c ?f o

Fig 2 indicates that for small Froude number. k is larger, therefore, W%7 KB is good approximation
here. We apply (17) and (21) to B.(' (22) respectively, which results in

7,r T1

(ITcos(O+ - 0o, + -) + 23sin(O+ - Or, - -) = 0, (92)
-I 477r

2acos(O_ - 0o2 -) + ,Jrsin(0- - 0o,2 + -) = 0, (93)

where

0+ = kX+(y+( ,c), (9-1)

X+_y+(c,1• = ( r/c+ (y(-1C)2-,dy
Y+

Sc) c)2 - + og

0- = kX-(y_(c),c), (95)

= J F'r2(y- c) 2 - :dy (96)
-I

= (lc) (U + 42• - - + -(97)o

(98)

F k (F21 (I C)2-1
= arctan [F(-C)[2+Fr(1 C)2 (99)

F}(I- )[-3+ C)2 - )'

/"(1-'2 (1 + e) I)!

0o2 arctan ( + c)2  (100)

To obtain nonzero a and 0, the following equation has to be valid

7 7r 1 2r ( 1 0
cos(O+ - Oo, - - ) cos(O_ - 0&2 - - ) = -7 Sin(O+ - Ooj - -)sin(O_ - 0,2 - -)

4 4 .1 4 4
Further assuming that -r < 1, we derive

k,1 (In + 1)r+ i (+n = 0, 1, 2, 3,.. ), (102)
X+(y+(c),c)

k. (n + 2)7r + 0.2
=+ ( = 0, 1, 2, 3,...) (103)

X.-(y-(c).,')
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We note that according to (99) as c --. the denoILinator of (103) X(y_(c),c) - 0, therefore,

k,', - c and from (102),as c - I - ,+(y+(c),c)- 0, hence, k,, - 00.
The intersections of these two branches of curves are

4) 4i+>+~ ,_(+)w~ (104)
.V+(y+ (c),c) X (y c),c)

Following C.Knessl & J.Keller (1992), we assume

(

k - kin,, = (105)

c- c,,,,, = ý (106)

Substitution of the above formula into equation (101 ) leads to

XI+ XI [ + kn\X---- ] [ + ki'll; X (

1
= -exp {-2knfX},

4

rl= -,W + x ,1- (108)S- c.,,, : - t X' + x'- 2k,,,,,.\-
£ I

___I X'+•i X')22 2 + -X 2
2kn.X- + c exp[-2knX2+.

where

'+ = (109)

X'- = X-+00o2

=1 00,01.',l+ = .Y+ + 180o-"-

1 00,2'-= .\j+u-.C + k Oc "

X = J F,2(y- c) 2 -ldy

The critical value of k where c becomes complex is the k where the last term of the above
formula vanishes, namely,

""1 -Ik '+ "- X- X - ] (10S/1, [ - ic
e .X\ I+ Vk ,I-+,,- ,(110
exp { -k .,.. X }
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The maximum growth rate occurs at = 0:
i f I }1

X [-2krnX}(111)

Fig 8 shows the caculated dispersion curves from (102), they are symmetric about the line
c, = 0 as we expected from the symmetry of the model.
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Appendix B

Case a) c >
We assume that y = 0 << y- and y = I >> y+ holds here and substitute (17) into B.C (.18),

which leads to

2a { [4 (-K (0))F' K'(0) + s ( )} (112)

+O3r (-iK (0))-' n'(0) + ikjFr~c2 - 1]COS ( + 7r)+ (K (0)) 1Sill ( + =

Equation (92) is still valid here. C'ombination of these two equations gives usC~(0 -0' 7 Cs 0, -0',,, -••0 )} + ý ý
cos(0+ -0, - -) tcos(0- --- i-)+ - - ) (113)

- r 2 sinl(O+_o 4) - 7)sin( o_,0 4)!

where r ]
= arctan 4 (K ))? 2 J (114)(- (0))- W (0)

0, kJ j F,(y -c) I1dy (115)o

Case b) c <

In this case ,we assume that y- < y = 0 < y+ and substitute (19) into the B.C (48), we get

t\'(0)K(0)- +2) a + ýK' (0)K(0)-Ore°4 =0 (116)

where

0 = (K (y))12dy (117)

From (116) and (92), we obtain

K' (0) r(0)-2T e2Ocos (0+( 1) -,,+ 4) =(118)

2 (K'(0) K(0)21+ 8) cos (0,(1) - 00-

By ommitting the L.II.S of the above formula, we get

9~(1)- ~ 71. 2n + Ir 19
4 2
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4;*0



403

Tablel The experimental results for H, = 1.5 (cm)

EXP H, H2 H, pS V F, T1  A 0 W
cm cm cm g/c,?3 cm/s s cm 0 cm

1 1.5 24.0 1.4 1.085 20.49 1.9 1 0.75 6.0
2 1.5 23.7 1.4 1.094 27.24 2.36 1.5 0.86 50 6.9
3 1.5 24.0 1.4 1.089 27.24 2.4 2.5 0.86 48 9.0
4 1.5 24.1 1.4 1.106 31.09 2.5 6.0 46 11.4
5 1.5 22.6 1.4 1.120 39.27 3.0 8.0 1.0 42 12.0
6 1.5 21.1 1.4 1.128 45.56 3.4 6.0 1.2 35 13.5
7 1.5 19.6 1.4 1.139 57.4 4.1 7.0 1.3 30 15.0
8 1.5 24.3 1.4 1.068 54.35 5.5 8.0 1.75 35 11.7

Table2 The experimental results for H, z 3.0 (cmr)

EXP HI H 2  He p. V Fr TZ A 0 W
cm cm cm cm cm/s s cm 0 cm

1 3.0 27.0 2.7 1.172 19.9 0.9 1.0 75 7.8
2 3.0 27.5 2.7 1.173 29.1 1.3 1.5 1.0 3 8.1
3 3.0 28.0 2.7 1.170 35.4 1.6 8.0 1.2 46 10.8
4 3.5 29.0 3.1 1.160 41.6 2.3 10.0 1.2 36 12.0
5 3.1 28.0 2.8 1.165 48.4 1.8 11.0 1.3 30 11.1

Table3 The experimental results for H1 - 6.0 (cm)

EXP H, H2 He pa V F, T, A 0 W
cm cm cm cm cm/s s cm 0 cm

1 6.6 27.0 5.3 1.172 16.3 0.54 N N N N
2 6.2 27.5 5.0 1.177 18.73 0.63 Y Y Y Y
3 6.5 27.6 5.3 1.176 22.86 0.75 0.8 82 7.8
4 5.0 21.0 4.0 1.150 18.53 0.76 N N N N
5 6.1 27.4 5.0 1.173 25.24 0.84 3.0 70 8.4
6 6.5 19.5 4.9 1.180 26.38 0.89 1.5 0.86 65 6.6
7 6.0 20.0 4.6 1.180 28.94 1.0 2.0 0.86 55 7.5

Table4 The experimental results for other H,

EXP HI H2 He PS V F, T1  A 0 W
cm cm cm cm cm/s s cm 0 cm

1 4.0 20.3 3.3 1.083 45.3 2.7 11.0 2.0 35 15.0
2 1.0 24.1 0.96 1.1 34.5 3.5 6.0 0.857 9.6
3 1.0 24.1 0.96 1.096 39.23 4.1 10 0.857 39 9.9
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Fig.4 Experimental results froti Table 1 to I and the corresponding least square fits.
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Fig.6 Neutral curve for case I where F = F,2. Solid li.ae indicates the numerical resultes. Dash line
represents the asymptotic behaviours by (36) and (41).
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